These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 30171898)
1. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles. Le MQ; Carpentier R; Lantier I; Ducournau C; Dimier-Poisson I; Betbeder D Int J Pharm; 2018 Oct; 550(1-2):316-324. PubMed ID: 30171898 [TBL] [Abstract][Full Text] [Related]
2. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: Comparison with cationic or anionic nanoparticles. Lê MQ; Carpentier R; Lantier I; Ducournau C; Fasquelle F; Dimier-Poisson I; Betbeder D Int J Pharm X; 2019 Dec; 1():100001. PubMed ID: 31545856 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. Bernocchi B; Carpentier R; Lantier I; Ducournau C; Dimier-Poisson I; Betbeder D J Control Release; 2016 Jun; 232():42-50. PubMed ID: 27080572 [TBL] [Abstract][Full Text] [Related]
4. Influence of surface charge and inner composition of nanoparticles on intracellular delivery of proteins in airway epithelial cells. Dombu C; Carpentier R; Betbeder D Biomaterials; 2012 Dec; 33(35):9117-26. PubMed ID: 22981076 [TBL] [Abstract][Full Text] [Related]
5. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Wen Z; Yan Z; He R; Pang Z; Guo L; Qian Y; Jiang X; Fang L Drug Deliv; 2011 Nov; 18(8):555-61. PubMed ID: 21812752 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Bento D; Staats HF; Gonçalves T; Borges O Eur J Pharm Biopharm; 2015 Jun; 93():149-64. PubMed ID: 25818119 [TBL] [Abstract][Full Text] [Related]
7. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Slütter B; Bal S; Keijzer C; Mallants R; Hagenaars N; Que I; Kaijzel E; van Eden W; Augustijns P; Löwik C; Bouwstra J; Broere F; Jiskoot W Vaccine; 2010 Aug; 28(38):6282-91. PubMed ID: 20638455 [TBL] [Abstract][Full Text] [Related]
8. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa. Bejgum BC; Donovan MD Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666 [TBL] [Abstract][Full Text] [Related]
9. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Dombu CY; Kroubi M; Zibouche R; Matran R; Betbeder D Nanotechnology; 2010 Sep; 21(35):355102. PubMed ID: 20689164 [TBL] [Abstract][Full Text] [Related]
10. PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. Csaba N; Sánchez A; Alonso MJ J Control Release; 2006 Jun; 113(2):164-72. PubMed ID: 16759732 [TBL] [Abstract][Full Text] [Related]
11. Bigger or Smaller? Size and Loading Effects on Nanoparticle Uptake Efficiency in the Nasal Mucosa. Albarki MA; Donovan MD AAPS PharmSciTech; 2020 Oct; 21(8):294. PubMed ID: 33099728 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging. Kang JH; Jang WY; Ko YT Pharm Res; 2017 Apr; 34(4):704-717. PubMed ID: 28078484 [TBL] [Abstract][Full Text] [Related]
13. Macrophage immunomodulatory activity of the cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharide. Wusiman A; He J; Zhu T; Liu Z; Gu P; Hu Y; Liu J; Wang D Int J Biol Macromol; 2019 Aug; 134():730-739. PubMed ID: 31071396 [TBL] [Abstract][Full Text] [Related]
14. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Pan L; Zhang Z; Lv J; Zhou P; Hu W; Fang Y; Chen H; Liu X; Shao J; Zhao F; Ding Y; Lin T; Chang H; Zhang J; Zhang Y; Wang Y Int J Nanomedicine; 2014; 9():5603-18. PubMed ID: 25506214 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide. Kirby BP; Pabari R; Chen CN; Al Baharna M; Walsh J; Ramtoola Z J Pharm Pharmacol; 2013 Oct; 65(10):1473-81. PubMed ID: 24028614 [TBL] [Abstract][Full Text] [Related]
17. Immunomodulatory effects of Alhagi honey polysaccharides encapsulated into PLGA nanoparticles. Wusiman A; Xu S; Ni H; Gu P; Liu Z; Zhang Y; Qiu T; Hu Y; Liu J; Wu Y; Wang D; Lu Y Carbohydr Polym; 2019 May; 211():217-226. PubMed ID: 30824082 [TBL] [Abstract][Full Text] [Related]
18. The nasal delivery of nanoencapsulated statins - an approach for brain delivery. Clementino A; Batger M; Garrastazu G; Pozzoli M; Del Favero E; Rondelli V; Gutfilen B; Barboza T; Sukkar MB; Souza SA; Cantù L; Sonvico F Int J Nanomedicine; 2016; 11():6575-6590. PubMed ID: 27994459 [TBL] [Abstract][Full Text] [Related]
19. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. Musumeci T; Pellitteri R; Spatuzza M; Puglisi G J Pharm Sci; 2014 Feb; 103(2):628-35. PubMed ID: 24395679 [TBL] [Abstract][Full Text] [Related]
20. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. Li M; Zhao M; Fu Y; Li Y; Gong T; Zhang Z; Sun X J Control Release; 2016 Apr; 228():9-19. PubMed ID: 26941035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]