These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30171928)

  • 1. Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution.
    Findrik Balogová A; Hudák R; Tóth T; Schnitzer M; Feranc J; Bakoš D; Živčák J
    J Biotechnol; 2018 Oct; 284():123-130. PubMed ID: 30171928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering.
    Saska S; Pires LC; Cominotte MA; Mendes LS; de Oliveira MF; Maia IA; da Silva JVL; Ribeiro SJL; Cirelli JA
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():265-273. PubMed ID: 29752098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Characterization of Poly(Lactic Acid)/ Poly(Hydroxybutyrate)/ Thermoplastic Starch Blends for Tissue Engineering Application.
    Culenova M; Birova I; Alexy P; Galfyova P; Nicodemou A; Moncmanova B; Plavec R; Tomanova K; Mencik P; Ziaran S; Danisovic L
    Cell Transplant; 2021; 30():9636897211021003. PubMed ID: 34053231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: development and mechanical testing.
    Chen MY; Skewes J; Daley R; Woodruff MA; Rukin NJ
    Biomed Eng Online; 2020 Jul; 19(1):55. PubMed ID: 32611431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing.
    Huan Z; Chu HK; Liu H; Yang J; Sun D
    Biomed Microdevices; 2017 Nov; 19(4):102. PubMed ID: 29134412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Electrical Heating Performance of CFDM 3D-Printed Graphene/Polylactic Acid (PLA) Horseshoe Pattern with Different 3D Printing Directions.
    Kim H; Lee S
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical crystallization strategy adaptive to 3-dimentional printing of polylactide matrix for complete stereo-complexation.
    Yang J; Li W; Mu B; Xu H; Hou X; Yang Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):247-257. PubMed ID: 34699890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-extrusion 3D printing of anatomical models for education.
    Smith ML; Jones JFX
    Anat Sci Educ; 2018 Jan; 11(1):65-72. PubMed ID: 28906599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications.
    Meischel M; Eichler J; Martinelli E; Karr U; Weigel J; Schmöller G; Tschegg EK; Fischerauer S; Weinberg AM; Stanzl-Tschegg SE
    J Mech Behav Biomed Mater; 2016 Jan; 53():104-118. PubMed ID: 26318571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications.
    Rojek I; Mikołajewski D; Dostatni E; Macko M
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of heat treatment on mechanical properties of 3D printed PLA.
    Jayanth N; Jaswanthraj K; Sandeep S; Mallaya NH; Siddharth SR
    J Mech Behav Biomed Mater; 2021 Nov; 123():104764. PubMed ID: 34392039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty.
    Berger M; Probst F; Schwartz C; Cornelsen M; Seitz H; Ehrenfeld M; Otto S
    J Craniomaxillofac Surg; 2015 Jul; 43(6):830-6. PubMed ID: 26027868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.
    Rosenzweig DH; Carelli E; Steffen T; Jarzem P; Haglund L
    Int J Mol Sci; 2015 Jul; 16(7):15118-35. PubMed ID: 26151846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study.
    Burzyńska K; Morasiewicz P; Filipiak J
    Adv Clin Exp Med; 2016; 25(6):1157-1163. PubMed ID: 28028968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review.
    Piedra-Cascón W; Krishnamurthy VR; Att W; Revilla-León M
    J Dent; 2021 Jun; 109():103630. PubMed ID: 33684463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures.
    Manzanares-Palenzuela CL; Hermanova S; Sofer Z; Pumera M
    Nanoscale; 2019 Jul; 11(25):12124-12131. PubMed ID: 31211311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.