These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3017207)

  • 1. Deafferentation pain and stimulation of the thalamic sensory relay nucleus: clinical and experimental study.
    Tsubokawa T; Katayama Y; Yamamoto T; Hirayama T
    Appl Neurophysiol; 1985; 48(1-6):166-71. PubMed ID: 3017207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thalamic sensory relay nucleus stimulation on the jaw-opening reflex in response to tooth-pulp stimulation in the cat.
    Tsubokawa T; Katayama Y; Hirayama T; Yamamoto T; Nishimoto H
    Appl Neurophysiol; 1986; 49(4):229-36. PubMed ID: 3619440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of thalamic sensory relay nucleus stimulation on trigeminal subnucleus caudalis neurons in the cat--abnormal bursting hyperactivity after trigeminal rhizotomy.
    Tsubokawa T; Katayama Y; Hirayama T
    Neurol Med Chir (Tokyo); 1987 Jul; 27(7):601-6. PubMed ID: 2448683
    [No Abstract]   [Full Text] [Related]  

  • 4. Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception.
    Wu D; Wang S; Stein JF; Aziz TZ; Green AL
    Exp Brain Res; 2014 Feb; 232(2):527-34. PubMed ID: 24217977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental model of deafferented pain in the cat.
    Namba S; Shimizu Y; Wani T; Fujiwara N
    Appl Neurophysiol; 1985; 48(1-6):201-11. PubMed ID: 3879790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central nervous system mechanisms for pain modulation.
    Willis WD
    Appl Neurophysiol; 1985; 48(1-6):153-65. PubMed ID: 3017206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep brain stimulation for intractable pain: a 15-year experience.
    Kumar K; Toth C; Nath RK
    Neurosurgery; 1997 Apr; 40(4):736-46; discussion 746-7. PubMed ID: 9092847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic motor cortex stimulation in patients with thalamic pain.
    Tsubokawa T; Katayama Y; Yamamoto T; Hirayama T; Koyama S
    J Neurosurg; 1993 Mar; 78(3):393-401. PubMed ID: 8433140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of hyperactive trigeminal subnucleus caudalis neurons after experimental trigeminal rhizotomy in response to thalamic sensory relay nucleus stimulation.
    Katayama Y; Tsubokawa T; Sugitani M; Hirayama T
    Neurol Res; 1986 Jun; 8(2):97-101. PubMed ID: 2875412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thalamic parafascicular stimulation on the periaqueductal gray and adjacent reticular formation neurons. A possible contribution to pain control mechanisms.
    Sakata S; Shima F; Kato M; Fukui M
    Brain Res; 1988 Jun; 451(1-2):85-96. PubMed ID: 3266959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Headache may arise from perturbation of brain.
    Raskin NH; Hosobuchi Y; Lamb S
    Headache; 1987 Sep; 27(8):416-20. PubMed ID: 3667258
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous neuronal hyperactivity in the medial and intralaminar thalamic nuclei of patients with deafferentation pain.
    Rinaldi PC; Young RF; Albe-Fessard D; Chodakiewitz J
    J Neurosurg; 1991 Mar; 74(3):415-21. PubMed ID: 1993906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of conditioning periaqueductal gray stimulation on responses of thalamic nociceptive neurons to tooth pulp stimulation.
    Ishii T; Nishikawa Y
    J Osaka Dent Univ; 1999 Apr; 33(1):9-21. PubMed ID: 10863471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential inhibitory mechanisms in VPL versus intralaminar nociceptive neurons of the cat: I. Effects of periaqueductal gray stimulation.
    Koyama N; Nishikawa Y; Chua AT; Iwamoto M; Yokota T
    Jpn J Physiol; 1995; 45(6):1005-27. PubMed ID: 8676571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat.
    Okada K; Murase K; Kawakita K
    Brain Res; 1999 Jul; 834(1-2):112-21. PubMed ID: 10407099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of internal capsule, thalamic sensory nucleus (VPM) and cerebral cortex inhibited deafferentation hyperactivity provoked after gasserian ganglionectomy in cat.
    Namba S; Nishimoto A
    Acta Neurochir Suppl (Wien); 1988; 42():243-7. PubMed ID: 3263751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of afferent information from urinary bladder, urethra and perineum to periaqueductal gray of cat.
    Duong M; Downie JW; Du HJ
    Brain Res; 1999 Feb; 819(1-2):108-19. PubMed ID: 10082866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.