BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30172080)

  • 1. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.
    Du J; Zuo Y; Lin L; Huang D; Niu L; Wei Y; Wang K; Lin Q; Zou Q; Li Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():150-159. PubMed ID: 30172080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering.
    Du J; Zou Q; Zuo Y; Li Y
    Int J Surg; 2014; 12(5):404-7. PubMed ID: 24657710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration.
    Li L; Zuo Y; Zou Q; Yang B; Lin L; Li J; Li Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22618-29. PubMed ID: 26406396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering.
    Du J; Gan S; Bian Q; Fu D; Wei Y; Wang K; Lin Q; Chen W; Huang D
    J Biomater Appl; 2018 Sep; 33(3):402-409. PubMed ID: 30223737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering.
    Lu HT; Lu TW; Chen CH; Mi FL
    Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration.
    Sariibrahimoglu K; Yang W; Leeuwenburgh SC; Yang F; Wolke JG; Zuo Y; Li Y; Jansen JA
    J Biomed Mater Res A; 2015 Jun; 103(6):1930-9. PubMed ID: 25203691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Preparation and characterization of nano-hydroxyapatite/polyurethane composite bio-film].
    Dong Z; Li Y; Zhang L; Zou Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Jun; 26(3):545-9. PubMed ID: 19634670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering.
    Du J; Zhang Y; Wang J; Xu M; Qin M; Zhang X; Huang D
    J Biomater Sci Polym Ed; 2023 May; 34(7):845-859. PubMed ID: 36346014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of novel nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles in chronic osteomyelitis.
    Zhang D; Liu W; Wu XD; He X; Lin X; Wang H; Li J; Jiang J; Huang W
    J Mater Sci Mater Med; 2019 May; 30(6):59. PubMed ID: 31127361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.
    Jackson BK; Bow AJ; Kannarpady G; Biris AS; Anderson DE; Dhar M; Bourdo SE
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1426-1443. PubMed ID: 29649935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.
    Yang W; Both SK; Zuo Y; Birgani ZT; Habibovic P; Li Y; Jansen JA; Yang F
    J Biomed Mater Res A; 2015 Jul; 103(7):2251-9. PubMed ID: 25370308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q
    J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.