These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30172143)

  • 1. Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance.
    Quan B; Xu G; Gu W; Sheng J; Ji G
    J Colloid Interface Sci; 2019 Jan; 533():297-303. PubMed ID: 30172143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption.
    Wu Q; Jin H; Zhang B; Huo S; Yang S; Su X; Wang J
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32075194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption.
    Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z
    J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance.
    Zhao B; Zhang X; Deng J; Bai Z; Liang L; Li Y; Zhang R
    Phys Chem Chem Phys; 2018 Nov; 20(45):28623-28633. PubMed ID: 30406240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption.
    Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance.
    Wang K; Chen Y; Tian R; Li H; Zhou Y; Duan H; Liu H
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11333-11342. PubMed ID: 29533582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Low-Frequency Electromagnetic Properties of MOF-Derived Cobalt through Interface Design.
    Liu W; Tan S; Yang Z; Ji G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31610-31622. PubMed ID: 30156105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications.
    Wang K; Zhang S; Chu W; Li H; Chen Y; Chen B; Chen B; Liu H
    J Colloid Interface Sci; 2021 Jun; 591():463-473. PubMed ID: 33636669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine Vacancy-Rich Nb
    Su Z; Yi S; Zhang W; Xu X; Zhang Y; Zhou S; Niu B; Long D
    Nanomicro Lett; 2023 Jul; 15(1):183. PubMed ID: 37450230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bead-like cobalt nanoparticles coated with dielectric SiO
    Wang B; Liao H; Xie X; Wu Q; Liu T
    J Colloid Interface Sci; 2020 Oct; 578():346-357. PubMed ID: 32535417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyimide-derived porous carbon/Co particle-based composites for high-performance microwave absorption.
    Yu W; Min Y; Fang J; Lu X; Wang Z; Jian L
    RSC Adv; 2022 Oct; 12(45):29070-29077. PubMed ID: 36320773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent.
    Wang Y; Di X; Gao X; Wu X
    Nanotechnology; 2020 Sep; 31(39):395710. PubMed ID: 32470960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption.
    Wen B; Yang H; Lin Y; Ma L; Qiu Y; Hu F
    J Colloid Interface Sci; 2021 Mar; 586():208-218. PubMed ID: 33162048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of CoFe@N-doped C/rGO composites derived from CoFe Prussian blue analogues for efficient microwave absorption.
    Wei S; Chen T; Shi Z; Chen S
    J Colloid Interface Sci; 2022 Mar; 610():395-406. PubMed ID: 34923277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires.
    Duan Y; Xiao Z; Yan X; Gao Z; Tang Y; Hou L; Li Q; Ning G; Li Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40078-40087. PubMed ID: 30379515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Nest-Like Architecture of Core-Shell CoFe
    Wang X; Zhu T; Chang S; Lu Y; Mi W; Wang W
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11252-11264. PubMed ID: 32045209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption.
    Wang L; Du Z; Bai X; Lin Y
    J Colloid Interface Sci; 2021 Jun; 591():76-84. PubMed ID: 33592527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe
    Li N; Huang GW; Li YQ; Xiao HM; Feng QP; Hu N; Fu SY
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2973-2983. PubMed ID: 28025890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical HCF@NC/Co Derived from Hollow Loofah Fiber Anchored with Metal-Organic Frameworks for Highly Efficient Microwave Absorption.
    Guo Y; Wang D; Wang J; Tian Y; Liu H; Liu C; Shen C
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2038-2050. PubMed ID: 34932301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.