BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3017216)

  • 1. Release of iron from ferritin by cardiotoxic anthracycline antibiotics.
    Thomas CE; Aust SD
    Arch Biochem Biophys; 1986 Aug; 248(2):684-9. PubMed ID: 3017216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive release of iron from ferritin by cation free radicals of paraquat and other bipyridyls.
    Thomas CE; Aust SD
    J Biol Chem; 1986 Oct; 261(28):13064-70. PubMed ID: 3020022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Free radicals mediate cardiac toxicity induced by adriamycin].
    Muraoka S; Miura T
    Yakugaku Zasshi; 2003 Oct; 123(10):855-66. PubMed ID: 14577331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of iron from ferritin by semiquinone, anthracycline, bipyridyl, and nitroaromatic radicals.
    Monteiro HP; Vile GF; Winterbourn CC
    Free Radic Biol Med; 1989; 6(6):587-91. PubMed ID: 2753390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron release from ferritin by alloxan radical.
    Miura T; Sakurai K
    Life Sci; 1988; 43(25):2145-9. PubMed ID: 2850425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen.
    Komiyama T; Kikuchi T; Sugiura Y
    J Pharmacobiodyn; 1986 Aug; 9(8):651-64. PubMed ID: 3023600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity.
    Minotti G; Cavaliere AF; Mordente A; Rossi M; Schiavello R; Zamparelli R; Possati G
    J Clin Invest; 1995 Apr; 95(4):1595-605. PubMed ID: 7706466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical.
    Bolann BJ; Ulvik RJ
    Biochem J; 1987 Apr; 243(1):55-9. PubMed ID: 3038086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells.
    Hasinoff BB; Begleiter A
    Free Radic Res; 2006 Sep; 40(9):974-8. PubMed ID: 17015278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the limited ability of superoxide to release iron from ferritin.
    Bolann BJ; Ulvik RJ
    Eur J Biochem; 1990 Nov; 193(3):899-904. PubMed ID: 2174370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of new sugar-modified derivatives of antitumor anthracycline, daunorubicin, to stimulate NAD(P)H oxidation in different cellular oxidoreductase systems: NADH dehydrogenase, NADPH cytochrome P450 reductase, and xanthine oxidase.
    Pawłowska J; Priebe W; Paine MJ; Wolf CR; Borowski E; Tarasiuk J
    Oncol Res; 2004; 14(10):469-74. PubMed ID: 15559760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace detection of hydroxyl radicals during the redox cycling of low concentrations of diaziquone: a new approach.
    Li B; Blough NV; Gutierrez PL
    Free Radic Biol Med; 2000 Sep; 29(6):548-56. PubMed ID: 11025198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide-mediated release of iron from ferritin by some flavoenzymes.
    Bando Y; Aki K
    Biochem Biophys Res Commun; 1990 Apr; 168(2):389-95. PubMed ID: 2159290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin, lipid peroxidation and redox-cycling xenobiotics.
    Winterbourn CC; Vile GF; Monteiro HP
    Free Radic Res Commun; 1991; 12-13 Pt 1():107-14. PubMed ID: 1649077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase.
    Komiyama T; Kikuchi T; Sugiura Y
    Biochem Pharmacol; 1982 Nov; 31(22):3651-6. PubMed ID: 6295407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox transformations of quinone antitumor drugs in liver microsomes.
    Rumyantseva GV; Weiner LM
    FEBS Lett; 1988 Jul; 234(2):459-63. PubMed ID: 2839377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.