These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 30172309)
1. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309 [TBL] [Abstract][Full Text] [Related]
2. Construction of a β-galactosidase-gene-based fusion is convenient for screening candidate genes involved in regulation of pyrrolnitrin biosynthesis in Pseudomonas chlororaphis G05. Luo W; Miao J; Feng Z; Lu R; Sun X; Zhang B; Ding W; Lu Y; Wang Y; Chi X; Ge Y J Gen Appl Microbiol; 2019 Jan; 64(6):259-268. PubMed ID: 29806629 [TBL] [Abstract][Full Text] [Related]
3. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05. Zhang B; Wang Y; Miao J; Lu Y; Lu R; Sun X; Luo W; Chi X; Feng Z; Ge Y J Basic Microbiol; 2018 Sep; 58(9):793-805. PubMed ID: 29995319 [TBL] [Abstract][Full Text] [Related]
4. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05. Chen L; Wang Y; Miao J; Wang Q; Liu Z; Xie W; Liu X; Feng Z; Cheng S; Chi X; Ge Y Appl Microbiol Biotechnol; 2021 Oct; 105(20):7825-7839. PubMed ID: 34562115 [TBL] [Abstract][Full Text] [Related]
5. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Chi X; Wang Y; Miao J; Wang W; Sun Y; Yu Z; Feng Z; Cheng S; Chen L; Ge Y Microbiol Res; 2022 Jul; 260():127050. PubMed ID: 35504237 [TBL] [Abstract][Full Text] [Related]
6. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327 [TBL] [Abstract][Full Text] [Related]
7. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Upadhyay A; Srivastava S Microbiol Res; 2011 May; 166(4):323-35. PubMed ID: 20813512 [TBL] [Abstract][Full Text] [Related]
8. Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Sokołowski W; Marek-Kozaczuk M; Sosnowski P; Sajnaga E; Jach ME; Karaś MA Molecules; 2024 Sep; 29(18):. PubMed ID: 39339366 [TBL] [Abstract][Full Text] [Related]
9. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Park JY; Oh SA; Anderson AJ; Neiswender J; Kim JC; Kim YC Lett Appl Microbiol; 2011 May; 52(5):532-7. PubMed ID: 21362001 [TBL] [Abstract][Full Text] [Related]
10. Phenazine and 1-Undecene Producing Tagele SB; Lee HG; Kim SW; Lee YS J Microbiol Biotechnol; 2019 Jan; 29(1):66-78. PubMed ID: 30415529 [TBL] [Abstract][Full Text] [Related]
11. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. Selin C; Habibian R; Poritsanos N; Athukorala SN; Fernando D; de Kievit TR FEMS Microbiol Ecol; 2010 Jan; 71(1):73-83. PubMed ID: 19889032 [TBL] [Abstract][Full Text] [Related]
12. Wu X; Chi X; Wang Y; Zhang K; Kai L; He Q; Tang J; Wang K; Sun L; Hao X; Xie W; Ge Y Plant Pathol J; 2019 Aug; 35(4):351-361. PubMed ID: 31481858 [TBL] [Abstract][Full Text] [Related]
13. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709 [TBL] [Abstract][Full Text] [Related]
14. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643 [TBL] [Abstract][Full Text] [Related]
15. Molecular Mechanism of Fusarium Fungus Inhibition by Phenazine-1-carboxamide. Li L; Ran T; Zhu H; Yin M; Yu W; Zou J; Li L; Ye Y; Sun H; Wang W; Guo J; Zhang F J Agric Food Chem; 2024 Jul; 72(27):15176-15189. PubMed ID: 38943677 [TBL] [Abstract][Full Text] [Related]
16. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461 [TBL] [Abstract][Full Text] [Related]
17. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
18. Edeine B Kim B; Nguyen MV; Park J; Kim YS; Han JW; Lee J-Y; Jeon J; Son H; Choi GJ; Kim H mBio; 2024 Jul; 15(7):e0135124. PubMed ID: 38860787 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Engineering of Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542 [TBL] [Abstract][Full Text] [Related]
20. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]