BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 30172331)

  • 21. Facile Synthesis of 3D Printed Tailored Electrode for 3-Monochloropropane-1,2-Diol (3-MCPD) Sensing.
    Arris FA; Mohan D; Sajab MS
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully integrated 3D-printed electrochemical cell with a modified inkjet-printed Ag electrode for voltammetric nitrate analysis.
    Sibug-Torres SM; Go LP; Castillo VCG; Pauco JLR; Enriquez EP
    Anal Chim Acta; 2021 May; 1160():338430. PubMed ID: 33894964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical synthesis of Prussian blue from iron impurities in 3D-printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide.
    Rocha RG; Stefano JS; Cardoso RM; Zambiazi PJ; Bonacin JA; Richter EM; Munoz RAA
    Talanta; 2020 Nov; 219():121289. PubMed ID: 32887031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of filament aging and conductive additive in 3D printed sensors.
    Kalinke C; de Oliveira PR; Neumsteir NV; Henriques BF; de Oliveira Aparecido G; Loureiro HC; Janegitz BC; Bonacin JA
    Anal Chim Acta; 2022 Jan; 1191():339228. PubMed ID: 35033250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Graphene Electrodes' Electrochemical Activation.
    Browne MP; Novotný F; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform.
    Richter EM; Rocha DP; Cardoso RM; Keefe EM; Foster CW; Munoz RAA; Banks CE
    Anal Chem; 2019 Oct; 91(20):12844-12851. PubMed ID: 31535844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lab-made 3D-printed electrochemical sensors for tetracycline determination.
    Lopes CEC; de Faria LV; Araújo DAG; Richter EM; Paixão TRLC; Dantas LMF; Muñoz RAA; da Silva IS
    Talanta; 2023 Jul; 259():124536. PubMed ID: 37062090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.
    Vance ME; Pegues V; Van Montfrans S; Leng W; Marr LC
    Environ Sci Technol; 2017 Sep; 51(17):9516-9523. PubMed ID: 28789516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes.
    Bishop GW; Satterwhite JE; Bhakta S; Kadimisetty K; Gillette KM; Chen E; Rusling JF
    Anal Chem; 2015; 87(10):5437-43. PubMed ID: 25901660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed electrochemical cells with laser engraving: developing portable electroanalytical devices for forensic applications.
    Matias TA; Ramos DLO; Faria LV; de Siervo A; Richter EM; Muñoz RAA
    Mikrochim Acta; 2023 Jul; 190(8):297. PubMed ID: 37460848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous monitoring of amoxicillin and paracetamol in synthetic biological fluids using a 3D printed disposable electrode with a lab-made conductive filament.
    Lisboa TP; de Faria LV; de Oliveira WBV; Oliveira RS; de Souza CC; Matos MAC; Dornellas RM; Matos RC
    Anal Bioanal Chem; 2024 Jan; 416(1):215-226. PubMed ID: 37923939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical determination of several biofuel antioxidants in biodiesel and biokerosene using polylactic acid loaded with carbon black within 3D-printed devices.
    Inoque NIG; João AF; de Faria LV; Muñoz RAA
    Mikrochim Acta; 2022 Jan; 189(2):57. PubMed ID: 35013813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2.
    Stefano JS; Guterres E Silva LR; Rocha RG; Brazaca LC; Richter EM; Abarza Muñoz RA; Janegitz BC
    Anal Chim Acta; 2022 Jan; 1191():339372. PubMed ID: 35033268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical Biosensor for SARS-CoV-2 cDNA Detection Using AuPs-Modified 3D-Printed Graphene Electrodes.
    Silva LRG; Stefano JS; Orzari LO; Brazaca LC; Carrilho E; Marcolino-Junior LH; Bergamini MF; Munoz RAA; Janegitz BC
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication.
    Meloni GN; Bertotti M
    PLoS One; 2017; 12(7):e0182000. PubMed ID: 28753638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen printed electrode for sensitive determination of ampyra.
    Hashemi P; Bagheri H; Afkhami A; Amidi S; Madrakian T
    Talanta; 2018 Jan; 176():350-359. PubMed ID: 28917761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New carbon black-based conductive filaments for the additive manufacture of improved electrochemical sensors by fused deposition modeling.
    Stefano JS; Silva LRGE; Janegitz BC
    Mikrochim Acta; 2022 Oct; 189(11):414. PubMed ID: 36217039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices.
    Omar MH; Razak KA; Ab Wahab MN; Hamzah HH
    RSC Adv; 2021 Apr; 11(27):16557-16571. PubMed ID: 35479129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.