BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 30172442)

  • 1. Characterization of indigenous Pediococcus pentosaceus, Leuconostoc kimchii, Weissella cibaria and Weissella confusa for faba bean bioprocessing.
    Rizzello CG; Coda R; Wang Y; Verni M; Kajala I; Katina K; Laitila A
    Int J Food Microbiol; 2019 Aug; 302():24-34. PubMed ID: 30172442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour.
    Xu Y; Wang Y; Coda R; Säde E; Tuomainen P; Tenkanen M; Katina K
    Int J Food Microbiol; 2017 May; 248():63-71. PubMed ID: 28258980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of the dominant lactic acid bacteria of chickpea liquid starters and doughs and propagation of chickpea sourdoughs with selected Weissella confusa.
    Boyaci Gunduz CP; Gaglio R; Franciosi E; Settanni L; Erten H
    Food Microbiol; 2020 Oct; 91():103490. PubMed ID: 32539978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sourdough-type propagation of faba bean flour: Dynamics of microbial consortia and biochemical implications.
    Coda R; Kianjam M; Pontonio E; Verni M; Di Cagno R; Katina K; Rizzello CG; Gobbetti M
    Int J Food Microbiol; 2017 May; 248():10-21. PubMed ID: 28242419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate.
    Xu Y; Coda R; Holopainen-Mantila U; Laitila A; Katina K; Tenkanen M
    Food Res Int; 2019 Jan; 115():191-199. PubMed ID: 30599931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria.
    Verni M; Wang C; Montemurro M; De Angelis M; Katina K; Rizzello CG; Coda R
    Front Microbiol; 2017; 8():2461. PubMed ID: 29312174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytic Acid Reduction by Bioprocessing as a Tool To Improve the In Vitro Digestibility of Faba Bean Protein.
    Rosa-Sibakov N; Re M; Karsma A; Laitila A; Nordlund E
    J Agric Food Chem; 2018 Oct; 66(40):10394-10399. PubMed ID: 30253094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of lactic acid bacteria on redox status and on proteolytic activity of buckwheat (Fagopyrum esculentum Moench) sourdoughs.
    Capuani A; Behr J; Vogel RF
    Int J Food Microbiol; 2013 Jul; 165(2):148-55. PubMed ID: 23728431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brewers' spent grain as substrate for dextran biosynthesis by Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16.
    Koirala P; Maina NH; Nihtilä H; Katina K; Coda R
    Microb Cell Fact; 2021 Jan; 20(1):23. PubMed ID: 33482833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exopolysaccharides Production during the Fermentation of Soybean and Fava Bean Flours by Leuconostoc mesenteroides DSM 20343.
    Xu Y; Coda R; Shi Q; Tuomainen P; Katina K; Tenkanen M
    J Agric Food Chem; 2017 Apr; 65(13):2805-2815. PubMed ID: 28326776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production.
    Corona O; Alfonzo A; Ventimiglia G; Nasca A; Francesca N; Martorana A; Moschetti G; Settanni L
    Food Microbiol; 2016 Oct; 59():43-56. PubMed ID: 27375243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between fava bean protein and dextrans produced by Leuconostoc pseudomesenteroides DSM 20193 and Weissella cibaria Sj 1b.
    Xu Y; Pitkänen L; Maina NH; Coda R; Katina K; Tenkanen M
    Carbohydr Polym; 2018 Jun; 190():315-323. PubMed ID: 29628253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties.
    Coda R; Melama L; Rizzello CG; Curiel JA; Sibakov J; Holopainen U; Pulkkinen M; Sozer N
    Int J Food Microbiol; 2015 Jan; 193():34-42. PubMed ID: 25462921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours.
    Wolter A; Hager AS; Zannini E; Galle S; Gänzle MG; Waters DM; Arendt EK
    Food Microbiol; 2014 Feb; 37():44-50. PubMed ID: 24230472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes.
    Verni M; De Mastro G; De Cillis F; Gobbetti M; Rizzello CG
    Food Res Int; 2019 Nov; 125():108571. PubMed ID: 31554105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification and technological characterization of lactic acid bacteria isolated from fermented kidney beans flours (Phaseolus vulgaris L. and P. coccineus) in northwestern Argentina.
    Sáez GD; Hébert EM; Saavedra L; Zárate G
    Food Res Int; 2017 Dec; 102():605-615. PubMed ID: 29195991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products.
    Adimpong DB; Nielsen DS; Sørensen KI; Derkx PM; Jespersen L
    BMC Microbiol; 2012 May; 12():75. PubMed ID: 22594449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of non-Lactobacillus strains to be used as starters for sourdough fermentation.
    Montemurro M; Celano G; De Angelis M; Gobbetti M; Rizzello CG; Pontonio E
    Food Microbiol; 2020 Sep; 90():103491. PubMed ID: 32336362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough.
    Galli V; Venturi M; Coda R; Maina NH; Granchi L
    Food Res Int; 2020 Dec; 138(Pt B):109785. PubMed ID: 33288171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.
    Alfonzo A; Miceli C; Nasca A; Franciosi E; Ventimiglia G; Di Gerlando R; Tuohy K; Francesca N; Moschetti G; Settanni L
    Food Microbiol; 2017 Apr; 62():256-269. PubMed ID: 27889157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.