BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 30172485)

  • 1. Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection.
    Wu D; Hu N; Liu J; Fan G; Li X; Sun J; Dai C; Suo Y; Li G; Wu Y
    Talanta; 2018 Dec; 190():103-109. PubMed ID: 30172485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence resonance energy transfer (FRET) based "Turn-On" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening.
    Li G; Kong W; Zhao M; Lu S; Gong P; Chen G; Xia L; Wang H; You J; Wu Y
    Biosens Bioelectron; 2016 May; 79():728-35. PubMed ID: 26774085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO
    Shi M; Cen Y; Xu G; Wei F; Xu X; Cheng X; Chai Y; Sohail M; Hu Q
    Anal Chim Acta; 2019 Oct; 1077():225-231. PubMed ID: 31307713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive colorimetric assays for α-glucosidase activity and inhibitor screening based on unmodified gold nanoparticles.
    Chen H; Zhang J; Wu H; Koh K; Yin Y
    Anal Chim Acta; 2015 May; 875():92-8. PubMed ID: 25937110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifunctional Tb(III)-modified Ce-MOF nanoprobe for colorimetric and fluorescence sensing of α-glucosidase activity.
    Xiao Y; Huang P; Wu FY
    Talanta; 2024 Aug; 276():126304. PubMed ID: 38796993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A colorimetric sensing strategy based on enzyme@metal-organic framework and oxidase-like IrO
    Zhong Y; Li QL; Lu M; Wang T; Yang H; He Q; Cui X; Li X; Zhao S
    Mikrochim Acta; 2020 Nov; 187(12):675. PubMed ID: 33241461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric determination of Hg
    Zhang Y; Ju P; Sun L; Wang Z; Zhai X; Jiang F; Sun C
    Mikrochim Acta; 2020 Jul; 187(7):422. PubMed ID: 32617681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A colorimetric method for screening α-glucosidase inhibitors from flavonoids using 3,3',5,5'-tetramethylbenzidine as a chromogenic probe.
    Liu DM; Dong C; Ma RT
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111400. PubMed ID: 33113490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and fast chromogenic reaction based on Ag
    Wang X; Zhang B; Li J; Chang H; Wei W
    Talanta; 2017 Dec; 175():229-234. PubMed ID: 28841984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-doped g-C
    Fu Q; Liang S; Zhang S; Zhou C; Lv Y; Su X
    Anal Chim Acta; 2024 Jul; 1311():342715. PubMed ID: 38816154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorometric assay for α-glucosidase activity based on quaternary AgInZnS QDs.
    Zhang J; Liu J; Wang M; Wang G; Su X
    Mikrochim Acta; 2021 Jun; 188(7):227. PubMed ID: 34109464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening.
    Ma D; Ge J; Wang A; Li J; Yang H; Zhai W; Cai R
    J Mater Chem B; 2023 Mar; 11(12):2727-2732. PubMed ID: 36880155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH.
    Zhang H; Wang Z; Yang X; Li ZL; Sun L; Ma J; Jiang H
    Anal Chim Acta; 2019 Nov; 1080():170-177. PubMed ID: 31409467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity.
    Song H; Li Z; Peng Y; Li X; Xu X; Pan J; Niu X
    Analyst; 2019 Mar; 144(7):2416-2422. PubMed ID: 30810570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-mode sensing system based on carbon quantum dots and Fe nanozymes for the detection of α-glucosidase and its inhibitors.
    Lv Y; Zhou C; Li M; Huo Z; Wei Z; Wang N; Wang G; Su X
    Talanta; 2024 Feb; 268(Pt 1):125328. PubMed ID: 37890370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Turn-on" fluorometric probe for α-glucosidase activity using red fluorescent carbon dots and 3,3',5,5'-tetramethylbenzidine.
    Liu J; Wu F; Liu C; Bao H; Fu T
    Mikrochim Acta; 2020 Aug; 187(9):498. PubMed ID: 32803321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic formation of a nonreducing L-ascorbic acid alpha-glucoside: purification and properties of alpha-glucosidases catalyzing site-specific transglucosylation from rat small intestine.
    Muto N; Nakamura T; Yamamoto I
    J Biochem; 1990 Feb; 107(2):222-7. PubMed ID: 2141837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular acyl migration and enzymatic hydrolysis of a novel monoacylated ascorbic acid derivative, 6-O-dodecanoyl-2-O-alpha-d-glucopyranosyl-L-ascorbic acid.
    Tai A; Mori T; Urushihara M; Ito H; Kawasaki D; Yamamoto I
    Bioorg Med Chem; 2010 Aug; 18(16):6179-83. PubMed ID: 20638286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dots doped with nitrogen and boron as ultrasensitive fluorescent probes for determination of α-glucosidase activity and its inhibitors in water samples and living cells.
    Huang S; Yang E; Yao J; Liu Y; Xiao Q
    Mikrochim Acta; 2018 Jul; 185(8):394. PubMed ID: 30056511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route.
    Liu Y; Zhu G; Yang J; Yuan A; Shen X
    PLoS One; 2014; 9(10):e109158. PubMed ID: 25271632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.