These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30172526)

  • 1. Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants.
    Zhang L; Zhao X; Cheng H; Kong J; Zhao Y; Zhu X; Zhang S; Zhang X
    Talanta; 2018 Dec; 190():403-409. PubMed ID: 30172526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry.
    McKenna J; Dhummakupt ES; Connell T; Demond PS; Miller DB; Michael Nilles J; Manicke NE; Glaros T
    Analyst; 2017 May; 142(9):1442-1451. PubMed ID: 28338135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ionization process of chemical warfare agent simulants in low temperature plasma ionization.
    Li B; Kong J; Zhang L; Fu W; Zhang Z; Li C
    Eur J Mass Spectrom (Chichester); 2020 Oct; 26(5):341-350. PubMed ID: 32819167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications.
    Tsai CW; Tipple CA; Yost RA
    Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry.
    Petersson F; Sulzer P; Mayhew CA; Watts P; Jordan A; Märk L; Märk TD
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3875-80. PubMed ID: 19902419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.
    Dumlao MC; Jeffress LE; Gooding JJ; Donald WA
    Analyst; 2016 Jun; 141(12):3714-21. PubMed ID: 26990180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid,
    Brown HM; McDaniel TJ; Doppalapudi KR; Mulligan CC; Fedick PW
    Analyst; 2021 May; 146(10):3127-3136. PubMed ID: 33999086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry.
    Steiner WE; Klopsch SJ; English WA; Clowers BH; Hill HH
    Anal Chem; 2005 Aug; 77(15):4792-9. PubMed ID: 16053290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force Fields for Molecular Modeling of Sarin and its Simulants: DMMP and DIMP.
    Emelianova A; Basharova EA; Kolesnikov AL; Arribas EV; Ivanova EV; Gor GY
    J Phys Chem B; 2021 Apr; 125(16):4086-4098. PubMed ID: 33872511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by "Paper-Spray" Ionization.
    Dhummakupt ES; Mach PM; Carmany D; Demond PS; Moran TS; Connell T; Wylie HS; Manicke NE; Nilles JM; Glaros T
    Anal Chem; 2017 Oct; 89(20):10866-10872. PubMed ID: 28898050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.
    Wolf JC; Etter R; Schaer M; Siegenthaler P; Zenobi R
    J Am Soc Mass Spectrom; 2016 Jul; 27(7):1197-202. PubMed ID: 27020924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.
    Satoh T; Kishi S; Nagashima H; Tachikawa M; Kanamori-Kataoka M; Nakagawa T; Kitagawa N; Tokita K; Yamamoto S; Seto Y
    Anal Chim Acta; 2015 Mar; 865():39-52. PubMed ID: 25732583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.
    Iwai T; Kakegawa K; Aida M; Nagashima H; Nagoya T; Kanamori-Kataoka M; Miyahara H; Seto Y; Okino A
    Anal Chem; 2015 Jun; 87(11):5707-15. PubMed ID: 25958918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.
    Smith JN; Noll RJ; Cooks RG
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1437-44. PubMed ID: 21504010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.
    Cotte-Rodríguez I; Justes DR; Nanita SC; Noll RJ; Mulligan CC; Sanders NL; Cooks RG
    Analyst; 2006 Apr; 131(4):579-89. PubMed ID: 16568176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS.
    Dowling SN; Skaggs CL; Owings CG; Moctar K; Picard CJ; Manicke NE
    Environ Sci Technol; 2022 Mar; 56(6):3535-3543. PubMed ID: 35188758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural elucidation of direct analysis in real time ionized nerve agent simulants with infrared multiple photon dissociation spectroscopy.
    Rummel JL; Steill JD; Oomens J; Contreras CS; Pearson WL; Szczepanski J; Powell DH; Eyler JR
    Anal Chem; 2011 Jun; 83(11):4045-52. PubMed ID: 21491962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.