These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30172876)

  • 21. Water-soluble polymer functionalized CdTe/ZnS quantum dots: a facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives.
    Liu B; Tong C; Feng L; Wang C; He Y; Lü C
    Chemistry; 2014 Feb; 20(8):2132-7. PubMed ID: 24515606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of nitroaromatic explosives by new D-π-A sensing fluorophores on the basis of the pyrimidine scaffold.
    Verbitskiy EV; Baranova AA; Lugovik KI; Shafikov MZ; Khokhlov KO; Cheprakova EM; Rusinov GL; Chupakhin ON; Charushin VN
    Anal Bioanal Chem; 2016 Jun; 408(15):4093-101. PubMed ID: 27020930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetraphenylethene-Based Conjugated Fluoranthene: A Potential Fluorescent Probe for Detection of Nitroaromatic Compounds.
    Chandrasekaran Y; Venkatramaiah N; Patil S
    Chemistry; 2016 Apr; 22(15):5288-94. PubMed ID: 26929030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives.
    Zhang W; Qiu LG; Yuan YP; Xie AJ; Shen YH; Zhu JF
    J Hazard Mater; 2012 Jun; 221-222():147-54. PubMed ID: 22560174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives.
    Li X; Wang C; Song W; Meng C; Zuo C; Xue Y; Lai WY; Huang W
    Chempluschem; 2019 Oct; 84(10):1623-1629. PubMed ID: 31943936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid explosives.
    Shi ZQ; Guo ZJ; Zheng HG
    Chem Commun (Camb); 2015 May; 51(39):8300-3. PubMed ID: 25877404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles.
    Sohn H; Sailor MJ; Magde D; Trogler WC
    J Am Chem Soc; 2003 Apr; 125(13):3821-30. PubMed ID: 12656615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A time series investigation of the stability of nitramine and nitroaromatic explosives in surface water samples at ambient temperature.
    Douglas TA; Johnson L; Walsh M; Collins C
    Chemosphere; 2009 Jun; 76(1):1-8. PubMed ID: 19329139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benzimidazole derivatives: selective fluorescent chemosensors for the picogram detection of picric acid.
    Xiong JF; Li JX; Mo GZ; Huo JP; Liu JY; Chen XY; Wang ZY
    J Org Chem; 2014 Dec; 79(23):11619-30. PubMed ID: 25387225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
    Venkatramaiah N; Kumar S; Patil S
    Chemistry; 2012 Nov; 18(46):14745-51. PubMed ID: 23015532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtogram level detection of nitrate ester explosives via an 8-pyrenyl-substituted fluorene dimer bridged by a 1,6-hexanyl unit.
    Chen L; Gao Y; Wang Y; He C; Zhu D; He Q; Cao H; Cheng J
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8817-23. PubMed ID: 24755051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of magnetically separable fluorescent terbium-based MOF nanospheres for highly selective trace-level detection of TNT.
    Qian JJ; Qiu LG; Wang YM; Yuan YP; Xie AJ; Shen YH
    Dalton Trans; 2014 Mar; 43(10):3978-83. PubMed ID: 24452313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New Polyhedral Oligomeric Silsesquioxanes-Based Fluorescent Ionic Liquids: Synthesis, Self-Assembly and Application in Sensors for Detecting Nitroaromatic Explosives.
    Li W; Wang D; Han D; Sun R; Zhang J; Feng S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly sensitive and selective detection of nitrophenolic explosives by using nanospheres of a tetraphenylethylene macrocycle displaying aggregation-induced emission.
    Feng HT; Zheng YS
    Chemistry; 2014 Jan; 20(1):195-201. PubMed ID: 24285612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives.
    Sengottuvelu D; Kachwal V; Raichure P; Raghav T; Laskar IR
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31875-31886. PubMed ID: 32551484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Oct; 20(41):13321-36. PubMed ID: 25164426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly ordered binary assembly of silica mesochannels and surfactant micelles for extraction and electrochemical analysis of trace nitroaromatic explosives and pesticides.
    Yan F; He Y; Ding L; Su B
    Anal Chem; 2015 Apr; 87(8):4436-41. PubMed ID: 25815534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2
    More KS; Mirgane HA; Shaikh S; Perupogu V; Birajdar SS; Puyad AL; Bhosale SV; Bhosale SV
    J Org Chem; 2024 May; 89(9):5917-5926. PubMed ID: 36534041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.