BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30173095)

  • 1. Modeling Escherichia coli and Rhodococcus erythropolis transport through wettable and water repellent porous media.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Afyuni M; Horn MA
    Colloids Surf B Biointerfaces; 2018 Dec; 172():280-287. PubMed ID: 30173095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting transport and fate of hydrophilic and hydrophobic bacteria in wettable and water-repellent porous media: Straining or attachment?
    Sepehrnia N; Gorakifard M; Hallett PD; Hajabbasi MA; Shokri N; Coyne M
    Colloids Surf B Biointerfaces; 2023 Aug; 228():113433. PubMed ID: 37392521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2017 Feb; 150():41-49. PubMed ID: 27870993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport, retention, and release of Escherichia coli and Rhodococcus erythropolis through dry natural soils as affected by water repellency.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Rezanezhad F; Lichner L; Hallett PD; Coyne M
    Sci Total Environ; 2019 Dec; 694():133666. PubMed ID: 31394325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media.
    Chen G; Walker SL
    Environ Sci Technol; 2012 Aug; 46(16):8782-90. PubMed ID: 22809290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow.
    Soltani Tehrani R; Hornstra L; van Dam J; Cirkel DG
    Appl Environ Microbiol; 2023 Aug; 89(8):e0021923. PubMed ID: 37458609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining.
    Zhang W; Wu S; Qin Y; Li S; Lei L; Sun S; Yang Y
    Environ Pollut; 2021 Feb; 270():116072. PubMed ID: 33223339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of soil-aged silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Klitzke S; Lang F; Vogel HJ
    J Contam Hydrol; 2016 Dec; 195():31-39. PubMed ID: 27871667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of citrate-coated silver nanoparticles in unsaturated sand.
    Kumahor SK; Hron P; Metreveli G; Schaumann GE; Vogel HJ
    Sci Total Environ; 2015 Dec; 535():113-21. PubMed ID: 25827720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Straining phenomena in bacteria transport through natural porous media.
    Díaz J; Rendueles M; Díaz M
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):400-9. PubMed ID: 19455361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E. coli interactions, adhesion and transport in alumino-silica clays.
    Wei H; Yang G; Wang B; Li R; Chen G; Li Z
    Colloids Surf B Biointerfaces; 2017 Jun; 154():82-88. PubMed ID: 28324690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of colloid particles onto interfaces in partially saturated sand.
    Zevi Y; Dathe A; McCarthy JF; Richards BK; Steenhuis TS
    Environ Sci Technol; 2005 Sep; 39(18):7055-64. PubMed ID: 16201629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically-weathered soil columns.
    Moradi A; Mosaddeghi MR; Chavoshi E; Safadoust A; Soleimani M
    Environ Pollut; 2019 Dec; 255(Pt 2):113230. PubMed ID: 31627174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.
    Li Y; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2008 Oct; 42(19):7174-80. PubMed ID: 18939543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.