These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30173107)

  • 61. Simultaneous electrochemical degradation of tetracycline and metronidazole through a high-efficiency and low-energy-consumption advanced oxidation process.
    Wang L; Liu Y; Pang D; Song H; Zhang S
    Chemosphere; 2022 Apr; 292():133469. PubMed ID: 34973244
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment.
    Özyonar F; Korkmaz MU
    Chemosphere; 2022 Mar; 290():133172. PubMed ID: 34914950
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation.
    Bote ME
    Heliyon; 2021 Dec; 7(12):e08614. PubMed ID: 34977420
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?
    Nguyen DD; Ngo HH; Guo W; Nguyen TT; Chang SW; Jang A; Yoon YS
    Sci Total Environ; 2016 Sep; 563-564():549-56. PubMed ID: 27155077
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Distillery industrial wastewater(DIW) treatment by the combination of sono(US), photo(UV) and electrocoagulation(EC) process.
    Asaithambi P; Yesuf MB; Govindarajan R; Hariharan NM; Thangavelu P; Alemayehu E
    J Environ Manage; 2022 Oct; 320():115926. PubMed ID: 35940007
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater.
    Khandaker S; Hossain MT; Saha PK; Rayhan U; Islam A; Choudhury TR; Awual MR
    J Environ Manage; 2021 Dec; 300():113782. PubMed ID: 34560463
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinetic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes.
    Ahmadian M; Yousefi N; Van Ginkel SW; Zare MR; Rahimi S; Fatehizadeh A
    Water Sci Technol; 2012; 66(4):754-60. PubMed ID: 22766863
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation.
    Arsand DR; Kümmerer K; Martins AF
    Sci Total Environ; 2013 Jan; 443():351-7. PubMed ID: 23202381
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.
    Yavuz Y; Ögütveren ÜB
    J Environ Manage; 2018 Feb; 207():151-158. PubMed ID: 29161644
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Remediation of arsenic(III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions.
    Deng W; Zhou Z; Zhang X; Yang Y; Sun Y; Wang Y; Liu T
    Water Sci Technol; 2018 Jan; 77(1-2):375-386. PubMed ID: 29377822
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Soluble chemical oxygen demand removal from bypass wastewater using iron electrocoagulation.
    Elnakar H; Buchanan I
    Sci Total Environ; 2020 Mar; 706():136076. PubMed ID: 31862601
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions.
    Ahmadzadeh S; Dolatabadi M
    Environ Monit Assess; 2018 May; 190(6):340. PubMed ID: 29748751
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds.
    Ensano BMB; Borea L; Naddeo V; Belgiorno V; de Luna MDG; Balakrishnan M; Ballesteros FC
    J Hazard Mater; 2019 Jan; 361():367-373. PubMed ID: 30265905
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.
    Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P
    J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrochemical removal of indium ions from aqueous solution using iron electrodes.
    Chou WL; Huang YH
    J Hazard Mater; 2009 Dec; 172(1):46-53. PubMed ID: 19625124
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Environmentally azithromycin pharmaceutical wastewater management and synergetic biocompatible approaches of loaded azithromycin@hematite nanoparticles.
    Al-Hakkani MF; Gouda GA; Hassan SHA; Mohamed MMA; Nagiub AM
    Sci Rep; 2022 Jun; 12(1):10970. PubMed ID: 35768496
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High efficiency three-dimensional electrochemical treatment of amoxicillin wastewater using Mn-Co/GAC particle electrodes and optimization of operating condition.
    Ma J; Gao M; Liu Q; Wang Q
    Environ Res; 2022 Jun; 209():112728. PubMed ID: 35081359
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jan; 161(2-3):1369-76. PubMed ID: 18550279
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation.
    Yılmaz S; Gerek EE; Yavuz Y; Koparal AS
    Water Sci Technol; 2018 Dec; 78(12):2542-2552. PubMed ID: 30767919
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimization and toxicity assessment of a combined electrocoagulation, H
    GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ
    Sci Total Environ; 2019 Feb; 651(Pt 1):551-560. PubMed ID: 30245411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.