These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3017335)

  • 1. Selective oxidation of imidazole ring in histidine residues by the ascorbic acid-copper ion system.
    Uchida K; Kawakishi S
    Biochem Biophys Res Commun; 1986 Jul; 138(2):659-65. PubMed ID: 3017335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific oxidation of angiotensin I by copper(II) and L-ascorbate: conversion of histidine residues to 2-imidazolones.
    Uchida K; Kawakishi S
    Arch Biochem Biophys; 1990 Nov; 283(1):20-6. PubMed ID: 2241171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective oxidation of histidine residues in proteins or peptides through the copper(II)-catalysed autoxidation of glucosone.
    Cheng RZ; Uchida K; Kawakishi S
    Biochem J; 1992 Jul; 285 ( Pt 2)(Pt 2):667-71. PubMed ID: 1637358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of histidine residues in the nonenzymic covalent attachment of glucose and ascorbic acid to protein.
    Hunt JV; Wolff SP
    Free Radic Res Commun; 1991; 14(4):279-87. PubMed ID: 1874457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly site-specific oxygenation of 1-methylhistidine and its analogue with a copper (II)/ascorbate-dependent redox system.
    Uchida K; Kawakishi S
    Biochim Biophys Acta; 1990 Jun; 1034(3):347-50. PubMed ID: 2364090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the inhibition of catalase by ascorbate. Roles of active oxygen species, copper and semidehydroascorbate.
    Davison AJ; Kettle AJ; Fatur DJ
    J Biol Chem; 1986 Jan; 261(3):1193-200. PubMed ID: 3003060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model studies on the metal-catalyzed protein oxidation: structure of a possible His-Lys cross-link.
    Liu Y; Sun G; David A; Sayre LM
    Chem Res Toxicol; 2004 Jan; 17(1):110-8. PubMed ID: 14727925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein.
    Requena JR; Groth D; Legname G; Stadtman ER; Prusiner SB; Levine RL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7170-5. PubMed ID: 11404462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-catalyzed autoxidations of GSH and L-ascorbic acid: mutual inhibition of the respective oxidations by their coexistence.
    Ohta Y; Shiraishi N; Nishikawa T; Nishikimi M
    Biochim Biophys Acta; 2000 May; 1474(3):378-82. PubMed ID: 10779690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin C (ascorbic acid) induced hydroxyl radical formation in copper contaminated household drinking water: role of bicarbonate concentration.
    Jansson PJ; Asplund KU; Mäkelä JC; Lindqvist C; Nordström T
    Free Radic Res; 2003 Aug; 37(8):901-5. PubMed ID: 14567450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid.
    Stepuro II; Piletskaya TP; Stepuro VI; Maskevich SA
    Biochemistry (Mosc); 1997 Dec; 62(12):1409-14. PubMed ID: 9481873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-dependent hydroxyl radical damage to ascorbic acid: formation of a thiobarbituric acid-reactive product.
    Gutteridge JM; Wilkins S
    FEBS Lett; 1982 Jan; 137(2):327-30. PubMed ID: 6277694
    [No Abstract]   [Full Text] [Related]  

  • 13. Unusual substituent effects in the hydroxylation of phenols by a Cu(2+)-ascorbic acid-O2 system, gamma-radiolysis, and microsomes.
    Urano Y; Higuchi T; Hirobe M
    Biochem Biophys Res Commun; 1993 Apr; 192(2):568-74. PubMed ID: 8387283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific oxidation of histidine residues in glycated insulin mediated by Cu2+.
    Cheng RZ; Kawakishi S
    Eur J Biochem; 1994 Aug; 223(3):759-64. PubMed ID: 8055951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulatory and inhibitory actions of proteins and amino acids on copper-catalysed free radical generation in the bulk phase.
    Simpson JA; Dean RT
    Free Radic Res Commun; 1990; 10(4-5):303-12. PubMed ID: 2289696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.
    Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M
    Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical oxidation of guanosine 5'-triphosphate (GTP): requirement for a GTP-Cu(II) complex.
    Cerchiaro G; Bolin C; Cardozo-Pelaez F
    Redox Rep; 2009; 14(2):82-92. PubMed ID: 19389276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex.
    Zhu BZ; Mao L; Fan RM; Zhu JG; Zhang YN; Wang J; Kalyanaraman B; Frei B
    Chem Res Toxicol; 2011 Jan; 24(1):30-4. PubMed ID: 21047085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper(II)-albumin complex can activate hydrogen peroxide in the presence of biological reductants: first ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Ueda J; Hanaki A
    Biochem Mol Biol Int; 1993 Feb; 29(2):247-53. PubMed ID: 8388292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of bovine serum albumin: identification of oxidation products and structural modifications.
    Guedes S; Vitorino R; Domingues R; Amado F; Domingues P
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2307-15. PubMed ID: 19575405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.