These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30173398)
1. Reaction mechanism of formate dehydrogenase studied by computational methods. Dong G; Ryde U J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398 [TBL] [Abstract][Full Text] [Related]
2. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus. Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130 [TBL] [Abstract][Full Text] [Related]
3. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase. Robinson WE; Bassegoda A; Reisner E; Hirst J J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274 [TBL] [Abstract][Full Text] [Related]
4. Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Khangulov SV; Gladyshev VN; Dismukes GC; Stadtman TC Biochemistry; 1998 Mar; 37(10):3518-28. PubMed ID: 9521673 [TBL] [Abstract][Full Text] [Related]
5. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities. Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of formate oxidation by metal-dependent formate dehydrogenases. Mota CS; Rivas MG; Brondino CD; Moura I; Moura JJ; González PJ; Cerqueira NM J Biol Inorg Chem; 2011 Dec; 16(8):1255-68. PubMed ID: 21773834 [TBL] [Abstract][Full Text] [Related]
7. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO Shiekh BA; Kaur D; Kumar S Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468 [TBL] [Abstract][Full Text] [Related]
8. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions. Hartmann T; Schrapers P; Utesch T; Nimtz M; Rippers Y; Dau H; Mroginski MA; Haumann M; Leimkühler S Biochemistry; 2016 Apr; 55(16):2381-9. PubMed ID: 27054466 [TBL] [Abstract][Full Text] [Related]
9. Evidence for the formation of a Mo-H intermediate in the catalytic cycle of formate dehydrogenase. Tiberti M; Papaleo E; Russo N; De Gioia L; Zampella G Inorg Chem; 2012 Aug; 51(15):8331-9. PubMed ID: 22800191 [TBL] [Abstract][Full Text] [Related]
10. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406 [TBL] [Abstract][Full Text] [Related]
11. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase. Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568 [TBL] [Abstract][Full Text] [Related]
12. Metal-Containing Formate Dehydrogenases, a Personal View. Leimkühler S Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Kinetics Support a Second Coordination Sphere Mechanism in Metal-Based Formate Dehydrogenase. Meneghello M; Uzel A; Broc M; Manuel RR; Magalon A; Léger C; Pereira IAC; Walburger A; Fourmond V Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202212224. PubMed ID: 36465058 [TBL] [Abstract][Full Text] [Related]
15. The Mechanism of Metal-Containing Formate Dehydrogenases Revisited: The Formation of Bicarbonate as Product Intermediate Provides Evidence for an Oxygen Atom Transfer Mechanism. Kumar H; Khosraneh M; Bandaru SSM; Schulzke C; Leimkühler S Molecules; 2023 Feb; 28(4):. PubMed ID: 36838526 [TBL] [Abstract][Full Text] [Related]
16. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. Hartmann T; Schwanhold N; Leimkühler S Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Boyington JC; Gladyshev VN; Khangulov SV; Stadtman TC; Sun PD Science; 1997 Feb; 275(5304):1305-8. PubMed ID: 9036855 [TBL] [Abstract][Full Text] [Related]
18. Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from Duffus BR; Schrapers P; Schuth N; Mebs S; Dau H; Leimkühler S; Haumann M Inorg Chem; 2020 Jan; 59(1):214-225. PubMed ID: 31814403 [TBL] [Abstract][Full Text] [Related]
19. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. Hartmann T; Leimkühler S FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888 [TBL] [Abstract][Full Text] [Related]
20. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]