These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30173602)

  • 1. Effect of inflammation on endothelial cells induced by poly-L-lactic acid degradation in vitro and in vivo.
    Chen D; Su Z; Weng L; Cao L; Chen C; Zeng S; Zhang S; Wu T; Hu Q; Xiao J
    J Biomater Sci Polym Ed; 2018 Oct; 29(15):1909-1919. PubMed ID: 30173602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammation and dysfunction in human aortic endothelial cells associated with poly-l-lactic acid degradation in vitro are alleviated by curcumin.
    Chen D; Weng L; Chen C; Zheng J; Wu T; Zeng S; Zhang S; Xiao J
    J Biomed Mater Res A; 2019 Dec; 107(12):2756-2763. PubMed ID: 31408261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curcumin attenuates inflammation of Macrophage-derived foam cells treated with Poly-L-lactic acid degradation via PPARγ signaling pathway.
    Chen D; Xi Y; Zhang S; Weng L; Dong Z; Chen C; Wu T; Xiao J
    J Mater Sci Mater Med; 2022 Mar; 33(4):33. PubMed ID: 35303193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biodegradable drug-eluting stent composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles demonstrates improved structural and functional performance for coronary artery disease.
    Lan Z; Lyu Y; Xiao J; Zheng X; He S; Feng G; Zhang Y; Wang S; Kislauskis E; Chen J; McCarthy S; Laham R; Jiang X; Wu T
    J Biomed Nanotechnol; 2014 Jul; 10(7):1194-204. PubMed ID: 24804540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries.
    Dinh Nguyen T; Feng G; Yi X; Lyu Y; Lan Z; Xia J; Wu T; Jiang X
    J Biomater Appl; 2018 Aug; 33(2):227-233. PubMed ID: 30096995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly-l-lactic acid/amorphous calcium phosphate bioabsorbable stent causes less inflammation than poly-l-lactic acid stent in coronary arteries.
    Kong L; Liu W; Yan G; Li Q; Yang H; Yu F; Song H
    Int J Clin Exp Med; 2014; 7(12):5317-23. PubMed ID: 25664037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets.
    Busch R; Strohbach A; Rethfeldt S; Walz S; Busch M; Petersen S; Felix S; Sternberg K
    Acta Biomater; 2014 Feb; 10(2):688-700. PubMed ID: 24148751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent.
    Wang X; Zachman AL; Chun YW; Shen FW; Hwang YS; Sung HJ
    Int J Cardiol; 2014 Jul; 174(3):688-95. PubMed ID: 24820736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue response to poly(L-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents.
    Kim HI; Ishihara K; Lee S; Seo JH; Kim HY; Suh D; Kim MU; Konno T; Takai M; Seo JS
    Biomaterials; 2011 Mar; 32(9):2241-7. PubMed ID: 21185597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.
    Zheng X; Wang Y; Lan Z; Lyu Y; Feng G; Zhang Y; Tagusari S; Kislauskis E; Robich MP; McCarthy S; Sellke FW; Laham R; Jiang X; Gu WW; Wu T
    J Biomed Nanotechnol; 2014 Jun; 10(6):900-10. PubMed ID: 24749387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of early vascular morphological changes between bioresorbable poly-L-lactic acid scaffolds and metallic stents in porcine iliac arteries.
    Sekimoto Y; Obara H; Matsubara K; Fujimura N; Harada H; Kitagawa Y
    Organogenesis; 2017 Apr; 13(2):29-38. PubMed ID: 28102777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced endothelialization on surface modified poly(L-lactic acid) substrates.
    Xu H; Deshmukh R; Timmons R; Nguyen KT
    Tissue Eng Part A; 2011 Mar; 17(5-6):865-76. PubMed ID: 20973746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biodegradable stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig.
    Bünger CM; Grabow N; Sternberg K; Goosmann M; Schmitz KP; Kreutzer HJ; Ince H; Kische S; Nienaber CA; Martin DP; Williams SF; Klar E; Schareck W
    J Endovasc Ther; 2007 Oct; 14(5):725-33. PubMed ID: 17924740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries.
    Gliesche DG; Hussner J; Witzigmann D; Porta F; Glatter T; Schmidt A; Huwyler J; Meyer Zu Schwabedissen HE
    Mol Pharm; 2016 Jul; 13(7):2290-300. PubMed ID: 27241028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model.
    Lincoff AM; Furst JG; Ellis SG; Tuch RJ; Topol EJ
    J Am Coll Cardiol; 1997 Mar; 29(4):808-16. PubMed ID: 9091528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional poly (l-lactic acid)/hydrophobic silica nanocomposite layer coated on magnesium stents for enhancing corrosion resistance and endothelial cell responses.
    Park S; Lee H; Kim HE; Jung HD; Jang TS
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112239. PubMed ID: 34225879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iliac anastomotic stenting with a biodegradable poly-L-lactide stent: a preliminary study after 1 and 6 weeks.
    Bünger CM; Grabow N; Sternberg K; Ketner L; Kröger C; Lorenzen B; Hauenstein K; Schmitz KP; Kreutzer HJ; Lootz D; Ince H; Nienaber CA; Klar E; Schareck W
    J Endovasc Ther; 2006 Aug; 13(4):539-48. PubMed ID: 16928171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans.
    Tamai H; Igaki K; Kyo E; Kosuga K; Kawashima A; Matsui S; Komori H; Tsuji T; Motohara S; Uehata H
    Circulation; 2000 Jul; 102(4):399-404. PubMed ID: 10908211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Biocompatibility of Intra-Arterial Poly-L-Lactic Acid Stent by Tantalum Ion Implantation : 3-Month Results in a Swine Model.
    Kim K; Park S; Park JH; Cho WS; Kim HE; Lee SM; Kim JE; Kang HS; Jang TS
    J Korean Neurosurg Soc; 2021 Nov; 64(6):853-863. PubMed ID: 34706407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirolimus-eluting biodegradable poly-L-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries.
    Bünger CM; Grabow N; Sternberg K; Kröger C; Ketner L; Schmitz KP; Kreutzer HJ; Ince H; Nienaber CA; Klar E; Schareck W
    J Surg Res; 2007 May; 139(1):77-82. PubMed ID: 17292417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.