These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3017375)

  • 21. Suppression of morphine abstinence syndrome by body electroacupuncture of different frequencies in rats.
    Han JS; Zhang RL
    Drug Alcohol Depend; 1993 Jan; 31(2):169-75. PubMed ID: 8382148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mianserin attenuates naloxone-precipitated withdrawal signs in rats acutely or chronically dependent upon morphine.
    Neal BS; Sparber SB
    J Pharmacol Exp Ther; 1986 Jan; 236(1):157-65. PubMed ID: 3001281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Injections of an opioid antagonist into the locus coeruleus and periaqueductal gray but not the amygdala precipitates morphine withdrawal in the 7-day-old rat.
    Jones KL; Barr GA
    Synapse; 2001 Feb; 39(2):139-51. PubMed ID: 11180501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping of c-fos gene expression in the brain during morphine dependence and precipitated withdrawal, and phenotypic identification of the striatal neurons involved.
    Georges F; Stinus L; Le Moine C
    Eur J Neurosci; 2000 Dec; 12(12):4475-86. PubMed ID: 11122358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependence and withdrawal following intracerebroventricular and systemic morphine administration: functional anatomy and behavior.
    Adams RE; Wooten GF
    Brain Res; 1990 Jun; 518(1-2):6-10. PubMed ID: 2390728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence.
    Kest B; Palmese CA; Hopkins E; Adler M; Juni A; Mogil JS
    Neuroscience; 2002; 115(2):463-9. PubMed ID: 12421612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of calcitonin on morphine tolerance and withdrawal syndrome in morphine physically dependent rats.
    Clementi G; Valerio C; Prato A; Caruso A; Patti F; Patanè S; Drago F
    Eur J Pharmacol; 1989 Apr; 163(1):175-9. PubMed ID: 2744091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Presynaptic dopaminergic function in the nucleus accumbens following chronic opiate treatment and precipitated withdrawal.
    Ghosh S; Grasing K
    Neurochem Res; 1999 Jan; 24(1):95-107. PubMed ID: 9973242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attenuation of the morphine withdrawal syndrome by inhibition of catabolism of endogenous enkephalins in the periaqueductal gray matter.
    Maldonado R; Fournié-Zaluski MC; Roques BP
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Apr; 345(4):466-72. PubMed ID: 1620246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of precipitated withdrawal in rats acutely dependent on morphine.
    Ramabadran K
    Jpn J Pharmacol; 1985 Apr; 37(4):307-16. PubMed ID: 2989597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pharmacological modulation of opiate withdrawal using an up-/down-regulation of the noradrenergic system in opiate-dependent rats.
    Streel E; Dan B; Campanella S; Meyvaert A; Hanak C; Pelc I; Verbanck P
    Int J Neuropsychopharmacol; 2006 Oct; 9(5):621-6. PubMed ID: 16146582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antagonist-precipitated opioid withdrawal in rats: evidence for dissociations between physical and motivational signs.
    Higgins GA; Sellers EM
    Pharmacol Biochem Behav; 1994 May; 48(1):1-8. PubMed ID: 8029278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid induction and quantitation of morphine dependence in the rat by pellet implantation.
    Bhargava HN
    Psychopharmacology (Berl); 1977 Mar; 52(1):55-62. PubMed ID: 403558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of supraspinal, peripheral and intrinsic spinal circuits to the pattern and magnitude of Fos-like immunoreactivity in the lumbar spinal cord of the rat withdrawing from morphine.
    Rohde DS; McKay WR; Chang DS; Abbadie C; Basbaum AI
    Neuroscience; 1997 Sep; 80(2):599-612. PubMed ID: 9284361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sites of action of morphine involved in the development of physical dependence in rats. III. Autoradiographic studies.
    Laschka E; Herz A
    Psychopharmacology (Berl); 1977 Jun; 53(1):33-7. PubMed ID: 196306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approach and escape responses to mesencephalic central gray stimulation in rats: effects of morphine and naloxone.
    Ichitani Y; Iwasaki T
    Behav Brain Res; 1986 Oct; 22(1):63-73. PubMed ID: 3024661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Different roles of the spinal protein kinase C alpha and gamma in morphine dependence and naloxone-precipitated withdrawal].
    Cao JL; Ding HL; He JH; Zhang LC; Wang JK; Zeng YM
    Sheng Li Xue Bao; 2005 Apr; 57(2):161-8. PubMed ID: 15830100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Swim-stress but not opioid withdrawal increases expression of c-fos immunoreactivity in rat periaqueductal gray neurons which project to the rostral ventromedial medulla.
    Bellchambers CE; Chieng B; Keay KA; Christie MJ
    Neuroscience; 1998 Mar; 83(2):517-24. PubMed ID: 9460759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heroin self-administration in dependent Wistar rats: increased sensitivity to naloxone.
    Carrera MR; Schulteis G; Koob GF
    Psychopharmacology (Berl); 1999 May; 144(2):111-20. PubMed ID: 10394991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal.
    Stinus L; Le Moal M; Koob GF
    Neuroscience; 1990; 37(3):767-73. PubMed ID: 2247222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.