These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30173762)

  • 1. Experimental Protocols for Generating Focused Mutant Libraries and Screening for Thermostable Proteins.
    Fürst MJLJ; Martin C; Lončar N; Fraaije MW
    Methods Enzymol; 2018; 608():151-187. PubMed ID: 30173762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations.
    Huang J; Xie DF; Feng Y
    Biochem Biophys Res Commun; 2017 Jan; 483(1):397-402. PubMed ID: 28017723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two strategies to engineer flexible loops for improved enzyme thermostability.
    Yu H; Yan Y; Zhang C; Dalby PA
    Sci Rep; 2017 Feb; 7():41212. PubMed ID: 28145457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of stabilized proteins by combinatorial consensus mutagenesis.
    Amin N; Liu AD; Ramer S; Aehle W; Meijer D; Metin M; Wong S; Gualfetti P; Schellenberger V
    Protein Eng Des Sel; 2004 Nov; 17(11):787-93. PubMed ID: 15574484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability.
    Wijma HJ; Floor RJ; Janssen DB
    Curr Opin Struct Biol; 2013 Aug; 23(4):588-94. PubMed ID: 23683520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.
    Tripathi A; Gupta K; Khare S; Jain PC; Patel S; Kumar P; Pulianmackal AJ; Aghera N; Varadarajan R
    Mol Biol Evol; 2016 Nov; 33(11):2960-2975. PubMed ID: 27563054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the stability and solubility of the glucocorticoid receptor ligand-binding domain by high-throughput library screening.
    Seitz T; Thoma R; Schoch GA; Stihle M; Benz J; D'Arcy B; Wiget A; Ruf A; Hennig M; Sterner R
    J Mol Biol; 2010 Nov; 403(4):562-77. PubMed ID: 20850457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering.
    Aalbers FS; Fürst MJ; Rovida S; Trajkovic M; Gómez Castellanos JR; Bartsch S; Vogel A; Mattevi A; Fraaije MW
    Elife; 2020 Mar; 9():. PubMed ID: 32228861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.
    Song L; Tsang A; Sylvestre M
    Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis.
    Lanio T; Jeltsch A; Pingoud A
    Biotechniques; 2000 Aug; 29(2):338-42. PubMed ID: 10948435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the thermostability of a novel beta-agarase AgaB through directed evolution.
    Shi C; Lu X; Ma C; Ma Y; Fu X; Yu W
    Appl Biochem Biotechnol; 2008 Oct; 151(1):51-9. PubMed ID: 18785021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca.
    Pei XQ; Yi ZL; Tang CG; Wu ZL
    Bioresour Technol; 2011 Feb; 102(3):3337-42. PubMed ID: 21129951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving thermostability of papain through structure-based protein engineering.
    Choudhury D; Biswas S; Roy S; Dattagupta JK
    Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.
    Ye X; Zhang C; Zhang YH
    Mol Biosyst; 2012 Jun; 8(6):1815-23. PubMed ID: 22511238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein.
    Fischer A; Seitz T; Lochner A; Sterner R; Merkl R; Bocola M
    Chembiochem; 2011 Jul; 12(10):1544-50. PubMed ID: 21626637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated protein engineering for chemical biotechnology via homologous recombination.
    Nordwald EM; Garst A; Gill RT; Kaar JL
    Curr Opin Biotechnol; 2013 Dec; 24(6):1017-22. PubMed ID: 23540421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally designed libraries for rapid enzyme stabilization.
    Wijma HJ; Floor RJ; Jekel PA; Baker D; Marrink SJ; Janssen DB
    Protein Eng Des Sel; 2014 Feb; 27(2):49-58. PubMed ID: 24402331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.