These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30173762)

  • 21. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.
    Song L; Tsang A; Sylvestre M
    Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated purification of His6-tagged proteins allows exhaustive screening of libraries generated by random mutagenesis.
    Lanio T; Jeltsch A; Pingoud A
    Biotechniques; 2000 Aug; 29(2):338-42. PubMed ID: 10948435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the thermostability of a novel beta-agarase AgaB through directed evolution.
    Shi C; Lu X; Ma C; Ma Y; Fu X; Yu W
    Appl Biochem Biotechnol; 2008 Oct; 151(1):51-9. PubMed ID: 18785021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca.
    Pei XQ; Yi ZL; Tang CG; Wu ZL
    Bioresour Technol; 2011 Feb; 102(3):3337-42. PubMed ID: 21129951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving thermostability of papain through structure-based protein engineering.
    Choudhury D; Biswas S; Roy S; Dattagupta JK
    Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of cyclohexanone monooxygenase by computational and experimental library design.
    Fürst MJLJ; Boonstra M; Bandstra S; Fraaije MW
    Biotechnol Bioeng; 2019 Sep; 116(9):2167-2177. PubMed ID: 31124128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a large protein by combined rational and random approaches: stabilizing the Clostridium thermocellum cellobiose phosphorylase.
    Ye X; Zhang C; Zhang YH
    Mol Biosyst; 2012 Jun; 8(6):1815-23. PubMed ID: 22511238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein.
    Fischer A; Seitz T; Lochner A; Sterner R; Merkl R; Bocola M
    Chembiochem; 2011 Jul; 12(10):1544-50. PubMed ID: 21626637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerated protein engineering for chemical biotechnology via homologous recombination.
    Nordwald EM; Garst A; Gill RT; Kaar JL
    Curr Opin Biotechnol; 2013 Dec; 24(6):1017-22. PubMed ID: 23540421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computationally designed libraries for rapid enzyme stabilization.
    Wijma HJ; Floor RJ; Jekel PA; Baker D; Marrink SJ; Janssen DB
    Protein Eng Des Sel; 2014 Feb; 27(2):49-58. PubMed ID: 24402331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis.
    Liu C; Zhao J; Liu J; Guo X; Rao D; Liu H; Zheng P; Sun J; Ma Y
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):265-277. PubMed ID: 30315354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
    Xie DF; Yang JX; Lv CJ; Mei JQ; Wang HP; Hu S; Zhao WR; Cao JR; Tu JL; Huang J; Mei LH
    J Biotechnol; 2019 Mar; 293():8-16. PubMed ID: 30703468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and Programmable Protein Mutagenesis Using Plasmid Recombineering.
    Higgins SA; Ouonkap SVY; Savage DF
    ACS Synth Biol; 2017 Oct; 6(10):1825-1833. PubMed ID: 28707884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computer-aided design of the stability of pyruvate formate-lyase from Escherichia coli by site-directed mutagenesis.
    Yang DF; Wei YT; Huang RB
    Biosci Biotechnol Biochem; 2007 Mar; 71(3):746-53. PubMed ID: 17341838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of TRAIL, an all-beta-sheet multimeric protein, using computational redesign.
    van der Sloot AM; Mullally MM; Fernandez-Ballester G; Serrano L; Quax WJ
    Protein Eng Des Sel; 2004 Sep; 17(9):673-80. PubMed ID: 15486023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimized and automated protocols for high-throughput screening of amylosucrase libraries.
    Emond S; Potocki-Véronèse G; Mondon P; Bouayadi K; Kharrat H; Monsan P; Remaud-Simeon M
    J Biomol Screen; 2007 Aug; 12(5):715-23. PubMed ID: 17517906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MDC-Analyzer: a novel degenerate primer design tool for the construction of intelligent mutagenesis libraries with contiguous sites.
    Tang L; Wang X; Ru B; Sun H; Huang J; Gao H
    Biotechniques; 2014 Jun; 56(6):301-2, 304, 306-8, passim. PubMed ID: 24924390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering highly thermostable xylanase variants using an enhanced combinatorial library method.
    Hokanson CA; Cappuccilli G; Odineca T; Bozic M; Behnke CA; Mendez M; Coleman WJ; Crea R
    Protein Eng Des Sel; 2011 Aug; 24(8):597-605. PubMed ID: 21708791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering.
    Bendl J; Stourac J; Sebestova E; Vavra O; Musil M; Brezovsky J; Damborsky J
    Nucleic Acids Res; 2016 Jul; 44(W1):W479-87. PubMed ID: 27174934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.