These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30174030)

  • 1. Front-face fluorescence excitation-emission matrices in combination with three-way chemometrics for the discrimination and prediction of phenolic response to vineyard agronomic practices.
    Cabrera-Bañegil M; Valdés-Sánchez E; Moreno D; Airado-Rodríguez D; Durán-Merás I
    Food Chem; 2019 Jan; 270():162-172. PubMed ID: 30174030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of fluorescence excitation emission matrices in polar and non-polar solvents to obtain three- and four- way arrays for classification of Tempranillo grapes according to maturation stage and hydric status.
    Cabrera-Bañegil M; Valdés-Sánchez E; Muñoz de la Peña A; Durán-Merás I
    Talanta; 2019 Jul; 199():652-661. PubMed ID: 30952311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front-face fluorescence spectroscopy combined with second-order multivariate algorithms for the quantification of polyphenols in red wine samples.
    Cabrera-Bañegil M; Hurtado-Sánchez MD; Galeano-Díaz T; Durán-Merás I
    Food Chem; 2017 Apr; 220():168-176. PubMed ID: 27855885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usefulness of fluorescence excitation-emission matrices in combination with PARAFAC, as fingerprints of red wines.
    Airado-Rodríguez D; Galeano-Díaz T; Durán-Merás I; Wold JP
    J Agric Food Chem; 2009 Mar; 57(5):1711-20. PubMed ID: 19215139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-emission fluorescence as a tool to assess the presence of grape-must caramel in PDO wine vinegars.
    Ríos-Reina R; Ocaña JA; Azcarate SM; Pérez-Bernal JL; Villar-Navarro M; Callejón RM
    Food Chem; 2019 Jul; 287():115-125. PubMed ID: 30857680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling excitation-emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety.
    Azcarate SM; de Araújo Gomes A; Alcaraz MR; Ugulino de Araújo MC; Camiña JM; Goicoechea HC
    Food Chem; 2015 Oct; 184():214-9. PubMed ID: 25872447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy and multivariate methods for the determination of brandy adulteration with mixed wine spirit.
    Markechová D; Májek P; Sádecká J
    Food Chem; 2014 Sep; 159():193-9. PubMed ID: 24767044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinífera harvested in Mexico.
    Acuña-Avila PE; Vásquez-Murrieta MS; Franco Hernández MO; López-Cortéz MDS
    Food Chem; 2016 Jul; 203():79-85. PubMed ID: 26948592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of total phenolic content in virgin olive oil using fluorescence excitation-emission spectroscopy coupled with chemometrics.
    Squeo G; Caponio F; Paradiso VM; Summo C; Pasqualone A; Khmelinskii I; Sikorska E
    J Sci Food Agric; 2019 Mar; 99(5):2513-2520. PubMed ID: 30379336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and quantification of extra virgin olive oil adulteration by means of autofluorescence excitation-emission profiles combined with multi-way classification.
    Durán Merás I; Domínguez Manzano J; Airado Rodríguez D; Muñoz de la Peña A
    Talanta; 2018 Feb; 178():751-762. PubMed ID: 29136891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of winemaking practices on color indexes and selected bioactive phenolics of Aglianico wine.
    Gambuti A; Strollo D; Erbaggio A; Lecce L; Moio L
    J Food Sci; 2007 Nov; 72(9):S623-8. PubMed ID: 18034746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.
    Labrouche F; Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. trans-Resveratrol, quercetin, (+)-catechin, and (-)-epicatechin content in south Italian monovarietal wines: relationship with maceration time and marc pressing during winemaking.
    Gambuti A; Strollo D; Ugliano M; Lecce L; Moio L
    J Agric Food Chem; 2004 Sep; 52(18):5747-51. PubMed ID: 15373419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First evidence of epicatechin vanillate in grape seed and red wine.
    Ma W; Waffo-Téguo P; Jourdes M; Li H; Teissedre PL
    Food Chem; 2018 Sep; 259():304-310. PubMed ID: 29680058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry.
    Rodriguez Lanzi C; Perdicaro DJ; Antoniolli A; Piccoli P; Vazquez Prieto MA; Fontana A
    Arch Biochem Biophys; 2018 Aug; 651():28-33. PubMed ID: 29860029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-bottling use of dehydrated waste grape skins to improve colour, phenolic and aroma composition of red wines.
    Pedroza MA; Carmona M; Alonso GL; Salinas MR; Zalacain A
    Food Chem; 2013 Jan; 136(1):224-36. PubMed ID: 23017417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic profile and free radical-scavenging activity of Cabernet Sauvignon wines of different geographical origins from the Balkan region.
    Radovanović BC; Radovanović AN; Souquet JM
    J Sci Food Agric; 2010 Nov; 90(14):2455-61. PubMed ID: 20648551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid.
    Yilmaz Y; Toledo RT
    J Agric Food Chem; 2004 Jan; 52(2):255-60. PubMed ID: 14733505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of non-anthocyanin phenolic compounds in wine samples using high performance liquid chromatography with ultraviolet and fluorescence detection.
    Rodríguez-Bernaldo de Quirós A; López-Hernández J; Ferraces-Casais P; Lage-Yusty MA
    J Sep Sci; 2007 Jun; 30(9):1262-6. PubMed ID: 17623466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.