BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3017429)

  • 21. Significance of skeletal muscle digitalis receptors for [3H]ouabain distribution in the guinea pig.
    Kjeldsen K; Nørgaard A; Hansen O; Clausen T
    J Pharmacol Exp Ther; 1985 Sep; 234(3):720-7. PubMed ID: 2993592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diabetes decreases Na+-K+ pump concentration in skeletal muscles, heart ventricular muscle, and peripheral nerves of rat.
    Kjeldsen K; Braendgaard H; Sidenius P; Larsen JS; Nørgaard A
    Diabetes; 1987 Jul; 36(7):842-8. PubMed ID: 3034710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle.
    Clausen T; Everts ME; Kjeldsen K
    J Physiol; 1987 Jul; 388():163-81. PubMed ID: 2443689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of intensified endurance training on the concentration of Na,K-ATPase and Ca-ATPase in human skeletal muscle.
    Madsen K; Franch J; Clausen T
    Acta Physiol Scand; 1994 Mar; 150(3):251-8. PubMed ID: 8010132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of stability of [3H]-ouabain binding site concentration in rat and human skeletal muscle post mortem.
    Nørgaard A; Kjeldsen K; Stenfatt Larsen J; Grønhøj Larsen C; Grønhøj Larsen F
    Scand J Clin Lab Invest; 1985 Apr; 45(2):139-44. PubMed ID: 2988104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of diuretics and lithium on 3H-ouabain binding site concentration and Na,K-content in rat skeletal muscle.
    Norgaard A; Kjeldsen K
    Acta Pharmacol Toxicol (Copenh); 1986 May; 58(5):363-7. PubMed ID: 3739730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in Na+, K(+)-adenosinetriphosphatase, citrate synthase and K+ in sheep skeletal muscle during immobilization and remobilization.
    Jebens E; Steen H; Fjeld TO; Bye E; Sejersted OM
    Eur J Appl Physiol Occup Physiol; 1995; 71(5):386-95. PubMed ID: 8565969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative determination of Na+-K+-ATPase and other sarcolemmal components in muscle cells.
    Hansen O; Clausen T
    Am J Physiol; 1988 Jan; 254(1 Pt 1):C1-7. PubMed ID: 2447793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. K+ supplementation increases muscle [Na+-K+-ATPase] and improves extrarenal K+ homeostasis in rats.
    Bundgaard H; Schmidt TA; Larsen JS; Kjeldsen K
    J Appl Physiol (1985); 1997 Apr; 82(4):1136-44. PubMed ID: 9104850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of adrenal steroids on the concentration of Na(+)-K+ pumps in rat skeletal muscle.
    Dørup I; Clausen T
    J Endocrinol; 1997 Jan; 152(1):49-57. PubMed ID: 9014839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ouabain, age and K-depletion on K-uptake in rat soleus muscle.
    Kjeldsen K; Nørgaard A; Clausen T
    Pflugers Arch; 1985 Aug; 404(4):365-73. PubMed ID: 2414718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Na+,K+-pumps and transmembrane Na+,K+-distribution in muscle function. The FEPS lecture - Bratislava 2007.
    Clausen T
    Acta Physiol (Oxf); 2008 Mar; 192(3):339-49. PubMed ID: 17988242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle.
    Nørgaard A; Kjeldsen K; Clausen T
    Nature; 1981 Oct; 293(5835):739-41. PubMed ID: 6270573
    [No Abstract]   [Full Text] [Related]  

  • 34. Increases in human skeletal muscle Na(+)-K(+)-ATPase concentration with short-term training.
    Green HJ; Chin ER; Ball-Burnett M; Ranney D
    Am J Physiol; 1993 Jun; 264(6 Pt 1):C1538-41. PubMed ID: 8392800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired muscle Ca2+ and K+ regulation contribute to poor exercise performance post-lung transplantation.
    McKenna MJ; Fraser SF; Li JL; Wang XN; Carey MF; Side EA; Morton J; Snell GI; Kjeldsen K; Williams TJ
    J Appl Physiol (1985); 2003 Oct; 95(4):1606-16. PubMed ID: 12807900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone.
    Haber RS; Loeb JN
    Am J Physiol; 1988 Dec; 255(6 Pt 1):E912-9. PubMed ID: 2849309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specificity and reversibility of the training effects on the concentration of Na+,K+-Atpase in foal skeletal muscle.
    Suwannachot P; Verkleij CB; Kocsis S; van Weeren PR; Evertst ME
    Equine Vet J; 2001 May; 33(3):250-5. PubMed ID: 11352346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of endurance training status and sex differences on Na+,K+-pump mRNA expression, content and maximal activity in human skeletal muscle.
    Murphy KT; Aughey RJ; Petersen AC; Clark SA; Goodman C; Hawley JA; Cameron-Smith D; Snow RJ; McKenna MJ
    Acta Physiol (Oxf); 2007 Mar; 189(3):259-69. PubMed ID: 17305706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training.
    Schmidt TA; Hasselbalch S; Farrell PA; Vestergaard H; Kjeldsen K
    J Appl Physiol (1985); 1994 May; 76(5):2140-6. PubMed ID: 8063678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced 3H-ouabain binding site (Na,K-ATPase) concentration in ventricular myocardium of dogs with tachycardia induced heart failure.
    Schmidt TA; Larsen JS; Shannon RP; Komamura K; Vatner DE; Kjeldsen K
    Basic Res Cardiol; 1993; 88(6):607-20. PubMed ID: 8147825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.