BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30174299)

  • 21. Timing and spacing of ubiquitin-dependent DNA damage bypass.
    Ulrich HD
    FEBS Lett; 2011 Sep; 585(18):2861-7. PubMed ID: 21605556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks.
    Álvarez V; Frattini C; Sacristán MP; Gallego-Sánchez A; Bermejo R; Bueno A
    Cell Rep; 2019 Oct; 29(5):1323-1335.e5. PubMed ID: 31665643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2.
    Anderson HJ; Vonarx EJ; Pastushok L; Nakagawa M; Katafuchi A; Gruz P; Di Rubbo A; Grice DM; Osmond MJ; Sakamoto AN; Nohmi T; Xiao W; Kunz BA
    Plant J; 2008 Sep; 55(6):895-908. PubMed ID: 18494853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing Rev1 catalyze protein-template DNA synthesis.
    Weaver TM; Cortez LM; Khoang TH; Washington MT; Agarwal PK; Freudenthal BD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25494-25504. PubMed ID: 32999062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis.
    Yang K; Weinacht CP; Zhuang Z
    Biochemistry; 2013 May; 52(19):3217-28. PubMed ID: 23634825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of Y-family polymerases and the DNA polymerase switch in mammalian cells.
    Kannouche P; Lehmann A
    Methods Enzymol; 2006; 408():407-15. PubMed ID: 16793383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange.
    Freudenthal BD; Gakhar L; Ramaswamy S; Washington MT
    Nat Struct Mol Biol; 2010 Apr; 17(4):479-84. PubMed ID: 20305653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
    McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA
    Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork.
    Choe KN; Moldovan GL
    Mol Cell; 2017 Feb; 65(3):380-392. PubMed ID: 28157503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Multifunctional Protein PolDIP2 in DNA Translesion Synthesis.
    Gagarinskaya DI; Makarova AV
    Adv Exp Med Biol; 2020; 1241():35-45. PubMed ID: 32383114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.
    Kannouche PL; Wing J; Lehmann AR
    Mol Cell; 2004 May; 14(4):491-500. PubMed ID: 15149598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break.
    Hirano Y; Sugimoto K
    Curr Biol; 2006 Mar; 16(6):586-90. PubMed ID: 16546083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eukaryotic mutagenesis and translesion replication dependent on DNA polymerase zeta and Rev1 protein.
    Lawrence CW; Maher VM
    Biochem Soc Trans; 2001 May; 29(Pt 2):187-91. PubMed ID: 11356151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion.
    Hedglin M; Pandey B; Benkovic SJ
    Elife; 2016 Oct; 5():. PubMed ID: 27770570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta.
    Garg P; Stith CM; Majka J; Burgers PM
    J Biol Chem; 2005 Jun; 280(25):23446-50. PubMed ID: 15879599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Division of labor within the DNA damage tolerance system reveals non-epistatic and clinically actionable targets for precision cancer medicine.
    Spanjaard A; Shah R; de Groot D; Buoninfante OA; Morris B; Lieftink C; Pritchard C; Zürcher LM; Ormel S; Catsman JJI; de Korte-Grimmerink R; Siteur B; Proost N; Boadum T; van de Ven M; Song JY; Kreft M; van den Berk PCM; Beijersbergen RL; Jacobs H
    Nucleic Acids Res; 2022 Jul; 50(13):7420-7435. PubMed ID: 35819193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dynamics of some postreplication DNA repair proteins in carcinogen-damaged mammalian cells].
    Nikiforov AA; Svetlova MP; Solov'eva LV; Ziegler M; Oei S; Nikolaishvili-Feinberg N; Codeiro-Stone M; Tomilin NV
    Tsitologiia; 2004; 46(1):43-52. PubMed ID: 15112431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Translesion synthesis in mammalian cells.
    Lehmann AR
    Exp Cell Res; 2006 Aug; 312(14):2673-6. PubMed ID: 16854411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo.
    Szüts D; Marcus AP; Himoto M; Iwai S; Sale JE
    Nucleic Acids Res; 2008 Dec; 36(21):6767-80. PubMed ID: 18953031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.