BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30174299)

  • 41. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo.
    Szüts D; Marcus AP; Himoto M; Iwai S; Sale JE
    Nucleic Acids Res; 2008 Dec; 36(21):6767-80. PubMed ID: 18953031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RAD18 signals DNA polymerase IOTA to stalled replication forks in cells entering S-phase with DNA damage.
    Kakar S; Watson NB; McGregor WG
    Adv Exp Med Biol; 2008; 614():137-43. PubMed ID: 18290323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.
    Stelter P; Ulrich HD
    Nature; 2003 Sep; 425(6954):188-91. PubMed ID: 12968183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polymerase Delta in Eukaryotes: How is It Transiently Exchanged with Specialized DNA Polymerases During Translesion DNA Synthesis?
    Liu F; Yang Y; Zhou Y
    Curr Protein Pept Sci; 2018; 19(8):790-804. PubMed ID: 29708067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rad5 Recruits Error-Prone DNA Polymerases for Mutagenic Repair of ssDNA Gaps on Undamaged Templates.
    Gallo D; Kim T; Szakal B; Saayman X; Narula A; Park Y; Branzei D; Zhang Z; Brown GW
    Mol Cell; 2019 Mar; 73(5):900-914.e9. PubMed ID: 30733119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction with PCNA is essential for yeast DNA polymerase eta function.
    Haracska L; Kondratick CM; Unk I; Prakash S; Prakash L
    Mol Cell; 2001 Aug; 8(2):407-15. PubMed ID: 11545742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Replication of damaged DNA.
    Lehmann AR
    Cell Cycle; 2003; 2(4):300-2. PubMed ID: 12851478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery.
    Tonzi P; Yin Y; Lee CWT; Rothenberg E; Huang TT
    Elife; 2018 Nov; 7():. PubMed ID: 30422114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis.
    Pustovalova Y; Magalhães MT; D'Souza S; Rizzo AA; Korza G; Walker GC; Korzhnev DM
    Biochemistry; 2016 Apr; 55(13):2043-53. PubMed ID: 26982350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variations on a theme: eukaryotic Y-family DNA polymerases.
    Washington MT; Carlson KD; Freudenthal BD; Pryor JM
    Biochim Biophys Acta; 2010 May; 1804(5):1113-23. PubMed ID: 19616647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets.
    Tonzi P; Huang TT
    DNA Repair (Amst); 2019 Jun; 78():20-26. PubMed ID: 30954011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA.
    Shivji MK; Podust VN; Hübscher U; Wood RD
    Biochemistry; 1995 Apr; 34(15):5011-7. PubMed ID: 7711023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA repair by polymerase delta in Saccharomyces cerevisiae is not controlled by the proliferating cell nuclear antigen-like Rad17/Mec3/Ddc1 complex.
    Cardone JM; Brendel M; Henriques JA
    Genet Mol Res; 2008 Feb; 7(1):127-32. PubMed ID: 18273828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.
    Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z
    Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The biological effect of Y-family DNA polymerases on the translesion synthesis].
    Gong Y; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):213-6. PubMed ID: 23488167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translesion synthesis: Y-family polymerases and the polymerase switch.
    Lehmann AR; Niimi A; Ogi T; Brown S; Sabbioneda S; Wing JF; Kannouche PL; Green CM
    DNA Repair (Amst); 2007 Jul; 6(7):891-9. PubMed ID: 17363342
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance.
    Waters LS; Minesinger BK; Wiltrout ME; D'Souza S; Woodruff RV; Walker GC
    Microbiol Mol Biol Rev; 2009 Mar; 73(1):134-54. PubMed ID: 19258535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea.
    Cranford MT; Chu AM; Baguley JK; Bauer RJ; Trakselis MA
    Nucleic Acids Res; 2017 Aug; 45(14):8329-8340. PubMed ID: 28655184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Error-free DNA-damage tolerance in Saccharomyces cerevisiae.
    Xu X; Blackwell S; Lin A; Li F; Qin Z; Xiao W
    Mutat Res Rev Mutat Res; 2015; 764():43-50. PubMed ID: 26041265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Y-family DNA polymerases in mammalian cells.
    Guo C; Kosarek-Stancel JN; Tang TS; Friedberg EC
    Cell Mol Life Sci; 2009 Jul; 66(14):2363-81. PubMed ID: 19367366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.