These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30174375)
1. Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning. Nypelö T; Asaadi S; Kneidinger G; Sixta H; Konnerth J Cellulose (Lond); 2018; 25(9):5297-5307. PubMed ID: 30174375 [TBL] [Abstract][Full Text] [Related]
2. Direct adhesive measurements between wood biopolymer model surfaces. Gustafsson E; Johansson E; Wågberg L; Pettersson T Biomacromolecules; 2012 Oct; 13(10):3046-53. PubMed ID: 22924973 [TBL] [Abstract][Full Text] [Related]
3. Differences in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe microscopy. Gusenbauer C; Nypelö T; Jakob DS; Xu XG; Vezenov DV; Asaadi S; Sixta H; Konnerth J Int J Biol Macromol; 2020 Dec; 165(Pt B):2520-2527. PubMed ID: 33736273 [TBL] [Abstract][Full Text] [Related]
4. Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers. Zahra H; Sawada D; Guizani C; Ma Y; Kumagai S; Yoshioka T; Sixta H; Hummel M Biomacromolecules; 2020 Oct; 21(10):4326-4335. PubMed ID: 32870661 [TBL] [Abstract][Full Text] [Related]
5. Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers. Arslan B; Egerton K; Zhang X; Abu-Lail NI Langmuir; 2017 Jul; 33(27):6857-6868. PubMed ID: 28617601 [TBL] [Abstract][Full Text] [Related]
6. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering. Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862 [TBL] [Abstract][Full Text] [Related]
7. Solubility and spinnability of cellulose-lignin blends in aqueous NMMO. Protz R; Lehmann A; Ganster J; Fink HP Carbohydr Polym; 2021 Jan; 251():117027. PubMed ID: 33142586 [TBL] [Abstract][Full Text] [Related]
8. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds. Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of cellulose fibers: towards wood composites by biomimetics. Gradwell SE; Renneckar S; Esker AR; Heinze T; Gatenholm P; Vaca-Garcia C; Glasser W C R Biol; 2004; 327(9-10):945-53. PubMed ID: 15587086 [TBL] [Abstract][Full Text] [Related]
10. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers. Wang B; Nie Y; Kang Z; Liu X Int J Biol Macromol; 2023 Jan; 225():1374-1383. PubMed ID: 36435466 [TBL] [Abstract][Full Text] [Related]
11. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Xue Y; Li W; Yang G; Lin Z; Qi L; Zhu P; Yu J; Chen J Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631912 [TBL] [Abstract][Full Text] [Related]
12. Oil spills abatement: factors affecting oil uptake by cellulosic fibers. Payne KC; Jackson CD; Aizpurua CE; Rojas OJ; Hubbe MA Environ Sci Technol; 2012 Jul; 46(14):7725-30. PubMed ID: 22724888 [TBL] [Abstract][Full Text] [Related]
13. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: Effect of lignin condensation on wood component dissolution. Wang H; Hirth K; Zhu J; Ma Q; Liu C; Zhu JY Int J Biol Macromol; 2019 Aug; 134():740-748. PubMed ID: 31100399 [TBL] [Abstract][Full Text] [Related]
14. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis. Li X; Clarke K; Li K; Chen A Biotechnol Prog; 2012; 28(6):1389-99. PubMed ID: 22887935 [TBL] [Abstract][Full Text] [Related]
15. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
16. Modification of lignin for the production of new compounded materials. Hüttermann A; Mai C; Kharazipour A Appl Microbiol Biotechnol; 2001 May; 55(4):387-94. PubMed ID: 11398916 [TBL] [Abstract][Full Text] [Related]
17. The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling. Ma J; Ji Z; Chen JC; Zhou X; Kim YS; Xu F Planta; 2015 Jul; 242(1):327-37. PubMed ID: 25926363 [TBL] [Abstract][Full Text] [Related]
18. Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometrics. Guizani C; Trogen M; Zahra H; Pitkänen L; Moriam K; Rissanen M; Mäkelä M; Sixta H; Hummel M Cellulose (Lond); 2021; 28(11):6797-6812. PubMed ID: 34720464 [TBL] [Abstract][Full Text] [Related]
19. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods. Higaki A; Yoshinaga A; Takabe K Tree Physiol; 2017 Dec; 37(12):1767-1775. PubMed ID: 29177443 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional Bioplastics Inspired by Wood Composition: Effect of Hydrolyzed Lignin Addition to Xylan-Cellulose Matrices. Tedeschi G; Guzman-Puyol S; Ceseracciu L; Paul UC; Picone P; Di Carlo M; Athanassiou A; Heredia-Guerrero JA Biomacromolecules; 2020 Feb; 21(2):910-920. PubMed ID: 31940189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]