BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3017451)

  • 1. The vacuolar membrane of plant cells: a newcomer in the field of biological membranes.
    Barbier-Brygoo H; Renaudin JP; Guern J
    Biochimie; 1986 Mar; 68(3):417-25. PubMed ID: 3017451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa.
    Bowman EJ; Bowman BJ
    J Bacteriol; 1982 Sep; 151(3):1326-37. PubMed ID: 6213602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue.
    Giannini JL; Gildensoph LH; Briskin DP
    Arch Biochem Biophys; 1987 May; 254(2):621-30. PubMed ID: 2437861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress.
    Reisen D; Marty F; Leborgne-Castel N
    BMC Plant Biol; 2005 Aug; 5():13. PubMed ID: 16080795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating.
    Smith JA; Uribe EG; Ball E; Heuer S; Lüttge U
    Eur J Biochem; 1984 Jun; 141(2):415-20. PubMed ID: 6234166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the ATPase of sugar-cane vacuoles in energization of the tonoplast.
    Thom M; Komor E
    Eur J Biochem; 1984 Jan; 138(1):93-9. PubMed ID: 6319133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/H+-transporter, H+-pumps and an aquaporin in light and heavy tonoplast membranes from organic acid and NaCl accumulating vacuoles of the annual facultative CAM plant and halophyte Mesembryanthemum crystallinum L.
    Epimashko S; Fischer-Schliebs E; Christian AL; Thiel G; Lüttge U
    Planta; 2006 Sep; 224(4):944-51. PubMed ID: 16575596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of yeast vacuolar membrane H+-ATPase and enzymological discrimination of three ATP-driven proton pumps in Saccharomyces cerevisiae.
    Uchida E; Ohsumi Y; Anraku Y
    Methods Enzymol; 1988; 157():544-62. PubMed ID: 2906718
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.
    Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R
    Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification of vacuolar membranes, mitochondria, and plasma membranes from Neurospora crassa and modes of discriminating among the different H+-ATPases.
    Bowman EJ; Bowman BJ
    Methods Enzymol; 1988; 157():562-73. PubMed ID: 2906719
    [No Abstract]   [Full Text] [Related]  

  • 11. Plant vacuoles.
    Ryan CA; Walker-Simmons M
    Methods Enzymol; 1983; 96():580-9. PubMed ID: 6656646
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.
    Migocka M; Papierniak A; Kosatka E; Klobus G
    J Exp Bot; 2011 Oct; 62(14):4903-16. PubMed ID: 21705389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Kakinuma Y; Masuda N; Igarashi K
    Biochim Biophys Acta; 1992 Jun; 1107(1):126-30. PubMed ID: 1319738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme.
    Kasho VN; Boyer PD
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8708-11. PubMed ID: 2530585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton pumping kinetics and origin of nitrate inhibition of tonoplast-type H+-ATPase.
    Tu SI; Nagahashi G; Brouillette JN
    Arch Biochem Biophys; 1987 Aug; 256(2):625-37. PubMed ID: 2887143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae.
    Serrano R
    Mol Cell Biochem; 1978 Nov; 22(1):51-63. PubMed ID: 154059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport processes of solutes across the vacuolar membrane of higher plants.
    Martinoia E; Massonneau A; Frangne N
    Plant Cell Physiol; 2000 Nov; 41(11):1175-86. PubMed ID: 11092901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H+-ATPase from vacuolar membranes of higher plants.
    Bennett AB; Leigh RA; Spanswick RM
    Methods Enzymol; 1988; 157():579-90. PubMed ID: 2906721
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation of plasma and vacuole membranes from green leaves by preparative free-flow electrophoresis.
    Auderset G; Sandelius AS; Penel C; Greppin H; Morré DJ
    Prog Clin Biol Res; 1988; 270():285-7. PubMed ID: 3413169
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa.
    Bowman BJ; Abreu S; Margolles-Clark E; Draskovic M; Bowman EJ
    Eukaryot Cell; 2011 May; 10(5):654-61. PubMed ID: 21335528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.