These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30174542)

  • 1. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments.
    Thornton GM; Bailey SJ; Schwab TD
    Mech Time Depend Mater; 2015; 19(3):335-349. PubMed ID: 30174542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healing ligaments have shorter lifetime and greater strain rate during fatigue than creep at functional stresses.
    Thornton GM; Bailey SJ
    J Biomech Eng; 2013 Sep; 135(9):91004. PubMed ID: 23775365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive loading damages healing ligaments more than sustained loading demonstrated by reduction in modulus and residual strength.
    Thornton GM; Bailey SJ
    J Biomech; 2012 Oct; 45(15):2589-94. PubMed ID: 22951277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum damage mechanics (CDM) modelling demonstrates that ligament fatigue damage accumulates by different mechanisms than creep damage.
    Schwab TD; Johnston CR; Oxland TR; Thornton GM
    J Biomech; 2007; 40(14):3279-84. PubMed ID: 17582420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Healing ligaments have decreased cyclic modulus compared to normal ligaments and immobilization further compromises healing ligament response to cyclic loading.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2003 Jul; 21(4):716-22. PubMed ID: 12798073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a continuum damage model to predict accumulation of sub-failure damage in tendons.
    Allan AN; Zitnay JL; Maas SA; Weiss JA
    J Mech Behav Biomed Mater; 2022 Nov; 135():105342. PubMed ID: 36055109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early medial collateral ligament scars have inferior creep behaviour.
    Thornton GM; Leask GP; Shrive NG; Frank CB
    J Orthop Res; 2000 Mar; 18(2):238-46. PubMed ID: 10815824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelation of creep and relaxation: a modeling approach for ligaments.
    Lakes RS; Vanderby R
    J Biomech Eng; 1999 Dec; 121(6):612-5. PubMed ID: 10633261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creep dominates tensile fatigue damage of the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Orthop Res; 2004 May; 22(3):633-40. PubMed ID: 15099645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.
    Baah-Dwomoh A; De Vita R
    J Mech Behav Biomed Mater; 2017 Oct; 74():128-141. PubMed ID: 28599153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Creep Damage on the Fatigue Life of P91 Steel.
    MroziĊ„ski S; Lis Z; Egner H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear ligament viscoelasticity.
    Provenzano P; Lakes R; Keenan T; Vanderby R
    Ann Biomed Eng; 2001 Oct; 29(10):908-14. PubMed ID: 11764321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.