These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30174619)

  • 1. Coordination Aspects of an Effective Sprint Start.
    Borysiuk Z; Waśkiewicz Z; Piechota K; Pakosz P; Konieczny M; Błaszczyszyn M; Nikolaidis PT; Rosemann T; Knechtle B
    Front Physiol; 2018; 9():1138. PubMed ID: 30174619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of the typical beach flags start for young adult sprinters.
    Lockie RG; Vickery WM; Janse de Jonge XA
    J Sports Sci Med; 2012; 11(3):444-51. PubMed ID: 24149352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute effects of resisted and assisted locomotor activation on sprint performance.
    Matusiński A; Gołas A; Zajac A; Maszczyk A
    Biol Sport; 2022 Oct; 39(4):1049-1054. PubMed ID: 36247959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Differences in the Sprint Start Between Faster and Slower High-Level Sprinters.
    Čoh M; Peharec S; Bačić P; Mackala K
    J Hum Kinet; 2017 Feb; 56():29-38. PubMed ID: 28469741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters.
    Kratky S; Buchecker M; Pfusterschmied J; Szekely C; Müller E
    J Strength Cond Res; 2016 Jan; 30(1):102-8. PubMed ID: 26270692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of lower leg and foot muscle thicknesses in sprinters: Does greater foot muscles contribute to sprint performance?
    Tanaka T; Suga T; Imai Y; Ueno H; Misaki J; Miyake Y; Otsuka M; Nagano A; Isaka T
    Eur J Sport Sci; 2019 May; 19(4):442-450. PubMed ID: 30360695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic Stride Characteristics of Maximal Sprint Running of Elite Sprinters - Verification of the "Swing-Pull Technique".
    Mattes K; Wolff S; Alizadeh S
    J Hum Kinet; 2021 Jan; 77():15-24. PubMed ID: 34168688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Built for speed: musculoskeletal structure and sprinting ability.
    Lee SS; Piazza SJ
    J Exp Biol; 2009 Nov; 212(Pt 22):3700-7. PubMed ID: 19880732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Reactive Bounding Coefficient as a Measure of Horizontal Reactive Strength to Evaluate Stretch-Shortening Cycle Performance in Sprinters.
    Washif JA; Kok LY
    J Hum Kinet; 2020 Jul; 73():45-55. PubMed ID: 32774536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selected determinants of acceleration in the 100m sprint.
    Maćkała K; Fostiak M; Kowalski K
    J Hum Kinet; 2015 Mar; 45():135-48. PubMed ID: 25964817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters.
    Loturco I; DʼAngelo RA; Fernandes V; Gil S; Kobal R; Cal Abad CC; Kitamura K; Nakamura FY
    J Strength Cond Res; 2015 Mar; 29(3):758-64. PubMed ID: 25162648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 15. Biomechanical analysis of standing long jump from varying starting positions.
    Mackala K; Stodółka J; Siemienski A; Coh M
    J Strength Cond Res; 2013 Oct; 27(10):2674-84. PubMed ID: 22652918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jump kinetic determinants of sprint acceleration performance from starting blocks in male sprinters.
    Maulder PS; Bradshaw EJ; Keogh J
    J Sports Sci Med; 2006; 5(2):359-66. PubMed ID: 24260010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sprint start performance: the potential influence of triceps surae electromechanical delay.
    Crotty ED; Hayes K; Harrison AJ
    Sports Biomech; 2022 May; 21(5):604-621. PubMed ID: 31573420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters.
    Nuell S; Illera-Domínguez VR; Carmona G; Alomar X; Padullés JM; Lloret M; Cadefau JA
    Eur J Sport Sci; 2020 Jul; 20(6):793-802. PubMed ID: 31526116
    [No Abstract]   [Full Text] [Related]  

  • 19. On the Importance of "Front-Side Mechanics" in Athletics Sprinting.
    Haugen T; Danielsen J; Alnes LO; McGhie D; Sandbakk Ø; Ettema G
    Int J Sports Physiol Perform; 2018 Apr; 13(4):420-427. PubMed ID: 28872386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Strength, Speed, and Power Performance Between Visually Impaired Paralympic and Olympic Sprinters.
    Freitas TT; Alcaraz PE; Winckler C; Zabaloy S; Pereira LA; Loturco I
    Int J Sports Physiol Perform; 2022 May; 17(5):787-790. PubMed ID: 35045395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.