These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30174775)

  • 1. Impact of bacterial streamers on biofouling of microfluidic filtration systems.
    Biswas I; Sadrzadeh M; Kumar A
    Biomicrofluidics; 2018 Jul; 12(4):044116. PubMed ID: 30174775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of bacterial streamers induced clogging in microfluidic devices.
    Hassanpourfard M; Ghosh R; Thundat T; Kumar A
    Lab Chip; 2016 Oct; 16(21):4091-4096. PubMed ID: 27713995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial floc mediated rapid streamer formation in creeping flows.
    Hassanpourfard M; Nikakhtari Z; Ghosh R; Das S; Thundat T; Liu Y; Kumar A
    Sci Rep; 2015 Aug; 5():13070. PubMed ID: 26278133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From cooperative to uncorrelated clogging in cross-flow microfluidic membranes.
    van Zwieten R; van de Laar T; Sprakel J; Schroën K
    Sci Rep; 2018 Apr; 8(1):5687. PubMed ID: 29632362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.
    Akhondi E; Wu B; Sun S; Marxer B; Lim W; Gu J; Liu L; Burkhardt M; McDougald D; Pronk W; Fane AG
    Water Res; 2015 Mar; 70():158-73. PubMed ID: 25528546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of bacterial streamers during filtration in microfluidic systems.
    Marty A; Roques C; Causserand C; Bacchin P
    Biofouling; 2012; 28(6):551-62. PubMed ID: 22686836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system.
    Debnath N; Kumar A; Thundat T; Sadrzadeh M
    Sci Rep; 2019 Jul; 9(1):10587. PubMed ID: 31332215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fouling resilient perforated feed spacers for membrane filtration.
    Kerdi S; Qamar A; Vrouwenvelder JS; Ghaffour N
    Water Res; 2018 Sep; 140():211-219. PubMed ID: 29715645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.
    Yoshida K; Tashiro Y; May T; Okabe S
    Water Res; 2015 Jun; 76():33-42. PubMed ID: 25776918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of tortuous flow on bacteria streamer development in microfluidic system during filtration.
    Marty A; Causserand C; Roques C; Bacchin P
    Biomicrofluidics; 2014 Jan; 8(1):014105. PubMed ID: 24753726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes.
    Semião AJ; Habimana O; Cao H; Heffernan R; Safari A; Casey E
    Water Res; 2013 May; 47(8):2909-20. PubMed ID: 23541307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem.
    Vrouwenvelder JS; Graf von der Schulenburg DA; Kruithof JC; Johns ML; van Loosdrecht MC
    Water Res; 2009 Feb; 43(3):583-94. PubMed ID: 19058830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial streamers as colloidal systems: Five grand challenges.
    Ghosh UU; Ali H; Ghosh R; Kumar A
    J Colloid Interface Sci; 2021 Jul; 594():265-278. PubMed ID: 33765646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows.
    Lee SH; Secchi E; Kang PK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2204466120. PubMed ID: 36989304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water hammer reduces fouling during natural water ultrafiltration.
    Broens F; Menne D; Pothof I; Blankert B; Roesink HD; Futselaar H; Lammertink RG; Wessling M
    Water Res; 2012 Mar; 46(4):1113-20. PubMed ID: 22227242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clogging of microfluidic systems.
    Dressaire E; Sauret A
    Soft Matter; 2016 Dec; 13(1):37-48. PubMed ID: 27801463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes.
    Markwardt SD; Ronnie N; Camper AK
    Biofouling; 2018 Aug; 34(7):740-752. PubMed ID: 30270657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.
    Wu B; Hochstrasser F; Akhondi E; Ambauen N; Tschirren L; Burkhardt M; Fane AG; Pronk W
    Water Res; 2016 Apr; 93():133-140. PubMed ID: 26900974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.