These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30175130)
41. Novel formulations of Bacillus thuringiensis var. kurstaki: an eco-friendly approach for management of lepidopteran pests. Vimala Devi PS; Duraimurugan P; Poorna Chandrika KSV; Vineela V; Hari PP World J Microbiol Biotechnol; 2020 May; 36(5):78. PubMed ID: 32409941 [TBL] [Abstract][Full Text] [Related]
42. Biodiversity and pathogenicity of bacteria associated with the gut microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Eski A; Demir İ; Güllü M; Demirbağ Z Microb Pathog; 2018 Aug; 121():350-358. PubMed ID: 29753873 [TBL] [Abstract][Full Text] [Related]
43. Histopathological and ultrastructural effects of delta-endotoxins of Bacillus thuringiensis serovar israelensis in the midgut of Simulium pertinax larvae (Diptera, Simuliidae). Cavados CF; Majerowicz S; Chaves JQ; Araújo-Coutinho CJ; Rabinovitch L Mem Inst Oswaldo Cruz; 2004 Aug; 99(5):493-8. PubMed ID: 15543412 [TBL] [Abstract][Full Text] [Related]
44. Molecular cloning and characterization of a novel vip3-type gene from Bacillus thuringiensis and evaluation of its toxicity against Helicoverpa armigera. Lone SA; Malik A; Padaria JC Microb Pathog; 2018 Jan; 114():464-469. PubMed ID: 29233779 [TBL] [Abstract][Full Text] [Related]
45. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Hernández-Martínez P; Ferré J; Escriche B Pest Manag Sci; 2009 Jun; 65(6):645-50. PubMed ID: 19253909 [TBL] [Abstract][Full Text] [Related]
46. Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae). Güney G; Cedden D; Hänniger S; Hegedus DD; Heckel DG; Toprak U Insect Biochem Mol Biol; 2024 Mar; 166():104073. PubMed ID: 38215915 [TBL] [Abstract][Full Text] [Related]
47. Susceptibility of agricultural pests of regional importance in South America to a Bacillus thuringiensis Cry1Ia protein. Berretta MF; Pedarros AS; Sauka DH; Pérez MP; Onco MI; Benintende GB J Invertebr Pathol; 2020 May; 172():107354. PubMed ID: 32194030 [TBL] [Abstract][Full Text] [Related]
48. Isolation and characterization of Lepidoptera specific Bacillus thuringiensis strains predominantly from north-eastern states of India. Tripathi M; Kumar A; Kalia V; Saxena AK; Gujar G Indian J Exp Biol; 2016 Jul; 54(7):431-451. PubMed ID: 29466622 [TBL] [Abstract][Full Text] [Related]
49. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Burtet LM; Bernardi O; Melo AA; Pes MP; Strahl TT; Guedes JV Pest Manag Sci; 2017 Dec; 73(12):2569-2577. PubMed ID: 28695664 [TBL] [Abstract][Full Text] [Related]
50. Fall Armyworm (Lepidoptera: Noctuidae) Development, Survivorship, and Damage on Cotton Plants Expressing Insecticidal Plant-Incorporated Protectants. Hardke JT; Jackson RE; Leonard BR; Temple JH J Econ Entomol; 2015 Jun; 108(3):1086-93. PubMed ID: 26470233 [TBL] [Abstract][Full Text] [Related]
51. Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Song F; Lin Y; Chen C; Shao E; Guan X; Huang Z J Microbiol Biotechnol; 2016 Oct; 26(10):1774-1780. PubMed ID: 27435544 [TBL] [Abstract][Full Text] [Related]
52. Highly toxic and broad-spectrum insecticidal Bacillus thuringiensis engineered by using the transposon Tn917 and protoplast fusion. Yu J; Pang Y; Tang M; Xie R; Tan L; Zeng S; Yuan M; Liu J Curr Microbiol; 2001 Aug; 43(2):112-9. PubMed ID: 11391474 [TBL] [Abstract][Full Text] [Related]
53. Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins. Naimov S; Boncheva R; Karlova R; Dukiandjiev S; Minkov I; de Maagd RA Appl Environ Microbiol; 2008 Dec; 74(23):7145-51. PubMed ID: 18836017 [TBL] [Abstract][Full Text] [Related]
54. Acute, sublethal and combination effects of azadirachtin and Bacillus thuringiensis toxins on Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Singh G; Rup PJ; Koul O Bull Entomol Res; 2007 Aug; 97(4):351-7. PubMed ID: 17645816 [TBL] [Abstract][Full Text] [Related]
55. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin. Abdelmalek N; Sellami S; Kallassy-Awad M; Tounsi MF; Mebarkia A; Tounsi S; Rouis S Pestic Biochem Physiol; 2017 Apr; 137():91-97. PubMed ID: 28364809 [TBL] [Abstract][Full Text] [Related]
56. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. Crava CM; Jakubowska AK; Escriche B; Herrero S; Bel Y PLoS One; 2015; 10(5):e0125991. PubMed ID: 25993013 [TBL] [Abstract][Full Text] [Related]
57. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
58. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Li H; Bouwer G J Invertebr Pathol; 2012 Jan; 109(1):110-6. PubMed ID: 22019386 [TBL] [Abstract][Full Text] [Related]