These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 30175130)
61. Biological Activity of Piper aduncum extracts on Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae) and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Lucena DC; Bertholdo-Vargas LR; Silva WC; Machado AF; Lopes TS; Moura S; Barros NM An Acad Bras Cienc; 2017; 89(3):1869-1879. PubMed ID: 28876400 [TBL] [Abstract][Full Text] [Related]
62. High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Benelli G; Govindarajan M; AlSalhi MS; Devanesan S; Maggi F Environ Sci Pollut Res Int; 2018 Apr; 25(11):10383-10391. PubMed ID: 28634795 [TBL] [Abstract][Full Text] [Related]
63. A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hübner). Naimov S; Nedyalkova R; Staykov N; Weemen-Hendriks M; Minkov I; de Maagd RA J Invertebr Pathol; 2014 Jan; 115():99-101. PubMed ID: 24286660 [TBL] [Abstract][Full Text] [Related]
64. Insecticidal activity of isolated gingerols and shogaols from Keosaeng K; Songoen W; Yooboon T; Bullangpoti V; Pluempanupat W Nat Prod Res; 2023 Feb; 37(4):669-674. PubMed ID: 35608145 [TBL] [Abstract][Full Text] [Related]
65. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. Herrero S; Gechev T; Bakker PL; Moar WJ; de Maagd RA BMC Genomics; 2005 Jun; 6():96. PubMed ID: 15978131 [TBL] [Abstract][Full Text] [Related]
66. Insecticidal activity of some wild plant extracts against cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Abd El-Aziz SE; El-Din AA Pak J Biol Sci; 2007 Jul; 10(13):2192-7. PubMed ID: 19070180 [TBL] [Abstract][Full Text] [Related]
67. Histopathological and combinatorial effects of the metalloprotease InhA1 and Cry proteins of Bacillus thuringiensis against Spodoptera littoralis. Dammak I; Dammak M; Tounsi S Int J Biol Macromol; 2015 Nov; 81():759-62. PubMed ID: 26358555 [TBL] [Abstract][Full Text] [Related]
68. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
70. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. Sun Y; Fu Z; He X; Yuan C; Ding X; Xia L J Invertebr Pathol; 2016 Mar; 135():60-2. PubMed ID: 25721170 [TBL] [Abstract][Full Text] [Related]
71. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Karumbaiah L; Oppert B; Jurat-Fuentes JL; Adang MJ Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):139-46. PubMed ID: 17145193 [TBL] [Abstract][Full Text] [Related]
72. Ovicidal activity of Atalantia monophylla (L) Correa against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Baskar K; Muthu C; Raj GA; Kingsley S; Ignacimuthu S Asian Pac J Trop Biomed; 2012 Dec; 2(12):987-91. PubMed ID: 23593580 [TBL] [Abstract][Full Text] [Related]
73. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
74. Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Daquila BV; Scudeler EL; Dossi FCA; Moreira DR; Pamphile JA; Conte H Ecotoxicol Environ Saf; 2019 Nov; 184():109642. PubMed ID: 31539808 [TBL] [Abstract][Full Text] [Related]
75. Characterization of insecticidal Cry1Cb2 protein from Bacillus thuringiensis toxic to Myzus persicae (Sulzer). Torres-Quintero MC; Arenas-Sosa I; Zuñiga-Navarrete F; Hernández-Velázquez VM; Alvear-Garcia A; Peña-Chora G J Invertebr Pathol; 2022 Mar; 189():107731. PubMed ID: 35202622 [TBL] [Abstract][Full Text] [Related]
76. Comparative study of three plant-derived extracts as new management strategies against Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Hussein HS; Salem MZM; Soliman AM; Eldesouky SE Sci Rep; 2023 Mar; 13(1):3542. PubMed ID: 36864078 [TBL] [Abstract][Full Text] [Related]
77. Bacillus thuringiensis insecticidal delta-endotoxin: diversity of crystal proteins and its relatedness to the toxicity spectrum. Haider MZ; Mahmood S J Basic Microbiol; 1990; 30(4):251-8. PubMed ID: 2166785 [TBL] [Abstract][Full Text] [Related]
78. Repellent and insecticide activity of Pelargonium x hortorum against Spodoptera littoralis (Boisd.). Farag M; Ahmed MH; Yousef H; El-Badawey SS; Abd El-Ghany MA; Abdel-Rahman AA Z Naturforsch C J Biosci; 2012; 67(7-8):398-404. PubMed ID: 23016279 [TBL] [Abstract][Full Text] [Related]
79. Involvement of Ji Y; Gao B; Zhao D; Wang Y; Zhang L; Wu H; Xie Y; Shi Q; Guo W J Agric Food Chem; 2024 Jan; 72(4):2321-2333. PubMed ID: 38206329 [TBL] [Abstract][Full Text] [Related]
80. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. Chakrabarty S; Jin M; Wu C; Chakraborty P; Xiao Y Pest Manag Sci; 2020 May; 76(5):1612-1617. PubMed ID: 32103608 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]