BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30175263)

  • 21. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of intestinal glutamate dehydrogenase and glutamine synthetase in environmental ammonia detoxification in the euryhaline four-eyed sleeper, Bostrychus sinensis.
    Peh WY; Chew SF; Ching BY; Loong AM; Ip YK
    Aquat Toxicol; 2010 Jun; 98(1):91-8. PubMed ID: 20189662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in free amino acid synthesis in the perfused liver of an air-breathing walking catfish, Clarias batrachus infused with ammonium chloride: a strategy to adapt under hyperammonia stress.
    Saha N; Dutta S; Häussinger D
    J Exp Zool; 2000 Jan; 286(1):13-23. PubMed ID: 10607365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-ingestion of glutamine and leucine synergistically promotes mTORC1 activation.
    Yoshimura R; Nomura S
    Sci Rep; 2022 Sep; 12(1):15870. PubMed ID: 36151270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism.
    Schriever SC; Deutsch MJ; Adamski J; Roscher AA; Ensenauer R
    J Nutr Biochem; 2013 May; 24(5):824-31. PubMed ID: 22898570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decreased insulin secretion in islets from protein malnourished rats is associated with impaired glutamate dehydrogenase function: effect of leucine supplementation.
    da Silva PM; Batista TM; Ribeiro RA; Zoppi CC; Boschero AC; Carneiro EM
    Metabolism; 2012 May; 61(5):721-32. PubMed ID: 22078937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamate synthesis in Streptomyces coelicolor.
    Fisher SH
    J Bacteriol; 1989 May; 171(5):2372-7. PubMed ID: 2708309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets.
    Carobbio S; Ishihara H; Fernandez-Pascual S; Bartley C; Martin-Del-Rio R; Maechler P
    Diabetologia; 2004 Feb; 47(2):266-76. PubMed ID: 14689183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome.
    Treberg JR; Clow KA; Greene KA; Brosnan ME; Brosnan JT
    Am J Physiol Endocrinol Metab; 2010 Jun; 298(6):E1219-25. PubMed ID: 20332361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sources of ammonia for urea synthesis in isolated rat liver cells.
    Rognstad R
    Biochim Biophys Acta; 1977 Feb; 496(2):249-54. PubMed ID: 836898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms: implications for biologic function.
    Plaitakis A; Metaxari M; Shashidharan P
    J Neurochem; 2000 Nov; 75(5):1862-9. PubMed ID: 11032875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes.
    Nissim I
    Am J Physiol; 1999 Oct; 277(4):F493-7. PubMed ID: 10516271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic β-cells.
    Wilson DF; Cember ATJ; Matschinsky FM
    J Appl Physiol (1985); 2018 Aug; 125(2):419-428. PubMed ID: 29648519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation.
    Timmerman M; Wilkening RB; Regnault TR
    Exp Biol Med (Maywood); 2003 Jan; 228(1):100-5. PubMed ID: 12524480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes.
    Dai W; Panserat S; Plagnes-Juan E; Seiliez I; Skiba-Cassy S
    Cell Physiol Biochem; 2015; 36(3):1084-100. PubMed ID: 26112996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-leucine increases [3H]-thymidine incorporation in chicken hepatocytes: involvement of the PKC, PI3K/Akt, ERK1/2, and mTOR signaling pathways.
    Lee MY; Jo SD; Lee JH; Han HJ
    J Cell Biochem; 2008 Dec; 105(6):1410-9. PubMed ID: 18980246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upregulation of amino acid transporter expression induced by L-leucine availability in L6 myotubes is associated with ATF4 signaling through mTORC1-dependent mechanism.
    Luo JQ; Chen DW; Yu B
    Nutrition; 2013 Jan; 29(1):284-90. PubMed ID: 22985970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutaminolysis and insulin secretion: from bedside to bench and back.
    Kelly A; Li C; Gao Z; Stanley CA; Matschinsky FM
    Diabetes; 2002 Dec; 51 Suppl 3():S421-6. PubMed ID: 12475785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators.
    Mathias RA; Greco TM; Cristea IM
    Methods Mol Biol; 2016; 1436():213-39. PubMed ID: 27246218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.