BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30175263)

  • 41. From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis.
    Karaca M; Frigerio F; Maechler P
    Neurochem Int; 2011 Sep; 59(4):510-7. PubMed ID: 21600947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the glutamate dehydrogenase reaction in furnishing aspartate nitrogen for urea synthesis: studies in perfused rat liver with 15N.
    Nissim I; Horyn O; Luhovyy B; Lazarow A; Daikhin Y; Nissim I; Yudkoff M
    Biochem J; 2003 Nov; 376(Pt 1):179-88. PubMed ID: 12935293
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decreased ureagenesis from alanine, but not from ammonia and glutamine, in the perfused rat liver after partial hepatectomy.
    Moriyama M; Makiyama I; Shiota M; Uesugi K; Kannan Y; Ohta M; Kimura K; Sugano T
    Hepatology; 1996 Jun; 23(6):1584-90. PubMed ID: 8675181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of L-leucine on the nitrogen metabolism of isolated rat liver mitochondria.
    McGivan JD; Bradford NM; Crompton M; Chappell JB
    Biochem J; 1973 May; 134(1):209-15. PubMed ID: 4723223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of liver glutamate dehydrogenase by reversible phosphorylation in a hibernating mammal.
    Bell RA; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Nov; 157(3):310-6. PubMed ID: 20674762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation.
    Anno T; Uehara S; Katagiri H; Ohta Y; Ueda K; Mizuguchi H; Moriyama Y; Oka Y; Tanizawa Y
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E280-5. PubMed ID: 14532172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of the molecular dysfunction caused by glutamate dehydrogenase S445L mutation responsible for hyperinsulinism/hyperammonemia.
    Grimaldi M; Karaca M; Latini L; Brioudes E; Schalch T; Maechler P
    Hum Mol Genet; 2017 Sep; 26(18):3453-3465. PubMed ID: 28911206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The expression of glutamate metabolism modulators in the intracranial tumors and glioblastoma cell line.
    Akkulak A; Dağdelen DN; Yalçın A; Oktay E; Diniz G; Kahraman DS; Şenoğlu M; Yalcin GD
    Mol Biol Rep; 2022 Feb; 49(2):1077-1083. PubMed ID: 34773180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice.
    Wang YS; Du L; Liang X; Meng P; Bi L; Wang YL; Wang C; Tang B
    Hepatology; 2019 Apr; 69(4):1614-1631. PubMed ID: 30552782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Effect of L-Ornithine on the Phosphorylation of mTORC1 Downstream Targets in Rat Liver.
    Kokubo T; Maeda S; Tazumi K; Nozawa H; Miura Y; Kirisako T
    Prev Nutr Food Sci; 2015 Dec; 20(4):238-45. PubMed ID: 26770910
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess.
    Westby CA; Enderlin CS; Steinberg NA; Joseph CM; Meeks JC
    J Bacteriol; 1987 Sep; 169(9):4211-4. PubMed ID: 2887545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of synthesis and reversible inactivation in vivo of dual coenzyme-specific glutamate dehydrogenase in Bacteroides fragilis.
    Yamamoto I; Saito H; Ishimoto M
    J Gen Microbiol; 1987 Oct; 133(10):2773-80. PubMed ID: 3449598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene Cloning and mRNA Expression of Glutamate Dehydrogenase in the Liver, Brain, and Intestine of the Swamp Eel, Monopterus albus (Zuiew), Exposed to Freshwater, Terrestrial Conditions, Environmental Ammonia, or Salinity Stress.
    Tok CY; Chew SF; Ip YK
    Front Physiol; 2011; 2():100. PubMed ID: 22319499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism.
    Stanley CA
    Mol Genet Metab; 2004 Apr; 81 Suppl 1():S45-51. PubMed ID: 15050973
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling.
    Nagamori S; Wiriyasermkul P; Okuda S; Kojima N; Hari Y; Kiyonaka S; Mori Y; Tominaga H; Ohgaki R; Kanai Y
    Amino Acids; 2016 Apr; 48(4):1045-1058. PubMed ID: 26724922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. mTORC1 is involved in the regulation of branched-chain amino acid catabolism in mouse heart.
    Zhen H; Kitaura Y; Kadota Y; Ishikawa T; Kondo Y; Xu M; Morishita Y; Ota M; Ito T; Shimomura Y
    FEBS Open Bio; 2016 Jan; 6(1):43-9. PubMed ID: 27047741
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Liver Glutamate Dehydrogenase Controls Whole-Body Energy Partitioning Through Amino Acid-Derived Gluconeogenesis and Ammonia Homeostasis.
    Karaca M; Martin-Levilain J; Grimaldi M; Li L; Dizin E; Emre Y; Maechler P
    Diabetes; 2018 Oct; 67(10):1949-1961. PubMed ID: 30002133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust regulation of hepatic pericentral amination by glutamate dehydrogenase kinetics.
    Bera S; Lamba S; Rashid M; Sharma AK; Medvinsky AB; Acquisti C; Chakraborty A; Li BL
    Integr Biol (Camb); 2016 Nov; 8(11):1126-1132. PubMed ID: 27747338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis.
    Davuluri G; Krokowski D; Guan BJ; Kumar A; Thapaliya S; Singh D; Hatzoglou M; Dasarathy S
    J Hepatol; 2016 Nov; 65(5):929-937. PubMed ID: 27318325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine.
    Skopelitis DS; Paranychianakis NV; Paschalidis KA; Pliakonis ED; Delis ID; Yakoumakis DI; Kouvarakis A; Papadakis AK; Stephanou EG; Roubelakis-Angelakis KA
    Plant Cell; 2006 Oct; 18(10):2767-81. PubMed ID: 17041150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.