These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 301753)

  • 1. Double dependence of organic acid active transport in proximal tubules of surviving frog kidney on sodium ions. I. Influence of sodium ions in bath medium on the uptake and run out of fluorescein and uranin.
    Bresler VM; Nikiforov AA
    Biochim Biophys Acta; 1977 Jul; 468(1):81-99. PubMed ID: 301753
    [No Abstract]   [Full Text] [Related]  

  • 2. Double dependence of organic acid active transport in proximal tubules of surviving frog kidney on sodium ions. II. Relationship between counter-flows of fluorescein and sodium ion across cell layer.
    Nikiforov AA; Bresler VM
    Biochim Biophys Acta; 1977 Jul; 468(1):100-13. PubMed ID: 301752
    [No Abstract]   [Full Text] [Related]  

  • 3. [Kinetic analysis of mechanisms of Na+-dependent transport of organic acids in the proximal tubules of surviving frog kidney. I. Transport of fluorescein and uranin in a sodium-free environment].
    Bresler VM; Nikiforov AA
    Tsitologiia; 1977; 19(1):82-9. PubMed ID: 302050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetic analysis of mechanisms of Na+-dependent organic acid transport in the proximal tubules of surviving frog kidney. II. Relationship between Na+ concentration in the medium and changes in the parameters of the Michaelis-Menten equation for fluorescein and uranin transport].
    Bresler VM; Nikiforov AA
    Tsitologiia; 1977 Feb; 19(2):172-80. PubMed ID: 888201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of acetate on transport of organic acid (fluorescein) in renal proximal tubules of frog.
    Nikiforov AA
    Biochim Biophys Acta; 1982 Mar; 686(1):36-46. PubMed ID: 6978151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stimulating action of cadmium on the Na-dependent transport of organic acid in the frog kidney].
    Nikiforov AA
    Tsitologiia; 1985 Jul; 27(7):834-7. PubMed ID: 3876636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Calcium dependence of the stimulating action of cadmium on organic acid transport in the frog kidney].
    Nikiforov AA
    Tsitologiia; 1985 Aug; 27(8):887-94. PubMed ID: 3933148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and active transport in the plasma membrane of the tubules of frog kidney.
    Bresler VM; Bresler SE; Nikiforov AA
    Biochim Biophys Acta; 1975 Nov; 406(4):526-37. PubMed ID: 1081004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Active transport of organic acids in the proximal tubules of a surviving rat kidney normally and under certain actions. I. The effect of temperature, aeration conditions and Na ions].
    Bresler VM; Nikiforov AA
    Tsitologiia; 1978 Sep; 20(9):1005-11. PubMed ID: 726073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cadmium stimulation of Na-independent organic acid transport in the kidney tubules].
    Nikiforov AA; Bresler VM
    Tsitologiia; 1984 Jan; 26(1):75-82. PubMed ID: 6701971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of acetate on Na+-independent organic acid transport in the proximal tubules of the rat kidney].
    Nikiforov AA
    Tsitologiia; 1982 Apr; 24(4):449-55. PubMed ID: 7090046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A direct microfluorimetric study of organic acid passage through the proximal tubule cells of the surviving Rana temporaria frog kidney].
    Bresler VM; Kachman AN; Nikiforov AA
    Zh Evol Biokhim Fiziol; 1976; 12(2):119-27. PubMed ID: 1085081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of artificial NaC1 and KC1 gradients on the active transport of organic acids in energy-depleted kidney proximal tubules. II. The KC1 gradient].
    Mozhaeva MG; Bresler VM; Nikiforov AA
    Tsitologiia; 1982 Jul; 24(7):811-4. PubMed ID: 7135480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of 3',5'-AMP on active transport of organic acid in the proximal tubules of isolated frog kidney].
    Bresler VM; Nikiforov AA
    Dokl Akad Nauk SSSR; 1974 Nov; 219(1):227-30. PubMed ID: 4372021
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of inorganic anions on organic acid transport in rat kidney tubules].
    Mozhaeva MG; Skul'skiĭ IA; Nikiforov AA; Bresler VM
    Tsitologiia; 1981 Jun; 23(6):660-5. PubMed ID: 7256863
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of artificial NaCl and KCl gradients on the active transport of organic acids in energy-depleted proximal kidney tubules. I. The NaCl gradient].
    Mozhaeva MG; Bresler VM; Nikiforov AA
    Tsitologiia; 1982 Jun; 24(6):673-9. PubMed ID: 7123656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of functional loading on the operation of the active transport system for organic acids in the proximal kidney tubules of rats after unilateral nephrectomy and in the early postnatal period].
    Rebane EN; Bresler VM
    Tsitologiia; 1984 Oct; 26(10):1199-203. PubMed ID: 6515720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Inorganic and organic anion interrelations in the active transport system for organic acids in the proximal kidney tubules].
    Mozhaeva MG; Bresler VM
    Tsitologiia; 1982 Apr; 24(4):488-91. PubMed ID: 7090051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescein transport in isolated proximal tubules in vitro: epifluorometric analysis.
    Sullivan LP; Grantham JA; Rome L; Wallace D; Grantham JJ
    Am J Physiol; 1990 Jan; 258(1 Pt 2):F46-51. PubMed ID: 2301596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-dependent glucose transport by cultured proximal tubule cells.
    Alavi N; Spangler RA; Jung CY
    Biochim Biophys Acta; 1987 May; 899(1):9-16. PubMed ID: 3567195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.