These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30175343)

  • 1. Galvanic cell reaction driven electrochemical doping of TiO
    Zhu H; Hu Y; Zhu K; Yan S; Lu L; Zhao M; Fu H; Li Z; Zou Z
    Chem Commun (Camb); 2018 Oct; 54(79):11116-11119. PubMed ID: 30175343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled charge-dynamics in cobalt-doped TiO
    Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z
    J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance.
    Wang Y; Zhang YY; Tang J; Wu H; Xu M; Peng Z; Gong XG; Zheng G
    ACS Nano; 2013 Oct; 7(10):9375-83. PubMed ID: 24047133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Mo doping on the charge separation dynamics and photocurrent performance of BiVO
    Pattengale B; Huang J
    Phys Chem Chem Phys; 2016 Dec; 18(48):32820-32825. PubMed ID: 27883137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Back Electron Transfer at TiO
    Zhu H; Yan S; Li Z; Zou Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33887-33895. PubMed ID: 28901739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of photoelectrochemical organics degradation and power generation by electrodeposited coatings of g-C
    Halevy S; Korin E; Bettelheim A
    Nanoscale Adv; 2019 Oct; 1(10):4128-4136. PubMed ID: 36132104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays.
    Yang F; Xi J; Gan LY; Wang Y; Lu S; Ma W; Cai F; Zhang Y; Cheng C; Zhao Y
    J Colloid Interface Sci; 2016 Feb; 464():1-9. PubMed ID: 26598949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation on the role of W doping in BiVO
    Zhao X; Hu J; Chen S; Chen Z
    Phys Chem Chem Phys; 2018 May; 20(19):13637-13645. PubMed ID: 29737988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO
    Li Z; Xin Y; Wu W; Fu B; Zhang Z
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30972-30979. PubMed ID: 27791348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting.
    Chen Y; Li A; Yue X; Wang LN; Huang ZH; Kang F; Volinsky AA
    Nanoscale; 2016 Jul; 8(27):13228-35. PubMed ID: 26926569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light.
    Li H; Wang X; Zhang L; Hou B
    Nanotechnology; 2015 Apr; 26(15):155704. PubMed ID: 25804558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation.
    Liu Q; He J; Yao T; Sun Z; Cheng W; He S; Xie Y; Peng Y; Cheng H; Sun Y; Jiang Y; Hu F; Xie Z; Yan W; Pan Z; Wu Z; Wei S
    Nat Commun; 2014 Oct; 5():5122. PubMed ID: 25283754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoanode with Enhanced Performance Achieved by Coating BiVO
    Zhou L; Yang Y; Zhang J; Rao PM
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11356-11362. PubMed ID: 28326767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO
    Momeni MM; Ghayeb Y; Ezati F
    J Colloid Interface Sci; 2018 Mar; 514():70-82. PubMed ID: 29245074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties.
    Kim C; Kim S; Hong SP; Lee J; Yoon J
    Phys Chem Chem Phys; 2016 Jun; 18(21):14370-5. PubMed ID: 27169417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of α-Bi
    Pang Y; Xu G; Feng Q; Liu J; Lv J; Zhang Y; Wu Y
    Langmuir; 2017 Sep; 33(36):8933-8942. PubMed ID: 28783435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.
    Behara DK; Ummireddi AK; Aragonda V; Gupta PK; Pala RG; Sivakumar S
    Phys Chem Chem Phys; 2016 Mar; 18(12):8364-77. PubMed ID: 26898750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.