These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30175425)
1. Stability of medial entorhinal cortex representations over time. Diehl GW; Hon OJ; Leutgeb S; Leutgeb JK Hippocampus; 2019 Mar; 29(3):284-302. PubMed ID: 30175425 [TBL] [Abstract][Full Text] [Related]
2. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Savelli F; Yoganarasimha D; Knierim JJ Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262 [TBL] [Abstract][Full Text] [Related]
3. Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex. Schlesiger MI; Boublil BL; Hales JB; Leutgeb JK; Leutgeb S Cell Rep; 2018 Mar; 22(12):3152-3159. PubMed ID: 29562172 [TBL] [Abstract][Full Text] [Related]
4. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. Pilly PK; Grossberg S J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394 [TBL] [Abstract][Full Text] [Related]
5. Functional Architecture of the Rat Parasubiculum. Tang Q; Burgalossi A; Ebbesen CL; Sanguinetti-Scheck JI; Schmidt H; Tukker JJ; Naumann R; Ray S; Preston-Ferrer P; Schmitz D; Brecht M J Neurosci; 2016 Feb; 36(7):2289-301. PubMed ID: 26888938 [TBL] [Abstract][Full Text] [Related]
6. Physiological Properties of Neurons in Bat Entorhinal Cortex Exhibit an Inverse Gradient along the Dorsal-Ventral Axis Compared to Entorhinal Neurons in Rat. Heys JG; Shay CF; MacLeod KM; Witter MP; Moss CF; Hasselmo ME J Neurosci; 2016 Apr; 36(16):4591-9. PubMed ID: 27098700 [TBL] [Abstract][Full Text] [Related]
7. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II. Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610 [TBL] [Abstract][Full Text] [Related]
8. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus. Hargreaves EL; Yoganarasimha D; Knierim JJ Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156 [TBL] [Abstract][Full Text] [Related]
9. Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices. Keene CS; Bladon J; McKenzie S; Liu CD; O'Keefe J; Eichenbaum H J Neurosci; 2016 Mar; 36(13):3660-75. PubMed ID: 27030753 [TBL] [Abstract][Full Text] [Related]
10. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Schlesiger MI; Cannova CC; Boublil BL; Hales JB; Mankin EA; Brandon MP; Leutgeb JK; Leibold C; Leutgeb S Nat Neurosci; 2015 Aug; 18(8):1123-32. PubMed ID: 26120964 [TBL] [Abstract][Full Text] [Related]
11. Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes. Diehl GW; Hon OJ; Leutgeb S; Leutgeb JK Neuron; 2017 Apr; 94(1):83-92.e6. PubMed ID: 28343867 [TBL] [Abstract][Full Text] [Related]
12. Spatial and memory circuits in the medial entorhinal cortex. Sasaki T; Leutgeb S; Leutgeb JK Curr Opin Neurobiol; 2015 Jun; 32():16-23. PubMed ID: 25463560 [TBL] [Abstract][Full Text] [Related]
13. Interspike Intervals Reveal Functionally Distinct Cell Populations in the Medial Entorhinal Cortex. Latuske P; Toader O; Allen K J Neurosci; 2015 Aug; 35(31):10963-76. PubMed ID: 26245960 [TBL] [Abstract][Full Text] [Related]
14. Functional connectivity of the entorhinal-hippocampal space circuit. Zhang SJ; Ye J; Couey JJ; Witter M; Moser EI; Moser MB Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120516. PubMed ID: 24366130 [TBL] [Abstract][Full Text] [Related]
15. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Sargolini F; Fyhn M; Hafting T; McNaughton BL; Witter MP; Moser MB; Moser EI Science; 2006 May; 312(5774):758-62. PubMed ID: 16675704 [TBL] [Abstract][Full Text] [Related]
16. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability. Agmon H; Burak Y Elife; 2020 Aug; 9():. PubMed ID: 32779570 [TBL] [Abstract][Full Text] [Related]
17. Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons. Rueckemann JW; DiMauro AJ; Rangel LM; Han X; Boyden ES; Eichenbaum H Hippocampus; 2016 Feb; 26(2):246-60. PubMed ID: 26299904 [TBL] [Abstract][Full Text] [Related]
18. Hippocampal remapping and grid realignment in entorhinal cortex. Fyhn M; Hafting T; Treves A; Moser MB; Moser EI Nature; 2007 Mar; 446(7132):190-4. PubMed ID: 17322902 [TBL] [Abstract][Full Text] [Related]
19. During hippocampal inactivation, grid cells maintain synchrony, even when the grid pattern is lost. Almog N; Tocker G; Bonnevie T; Moser EI; Moser MB; Derdikman D Elife; 2019 Oct; 8():. PubMed ID: 31621577 [TBL] [Abstract][Full Text] [Related]
20. Grid cells in rats deprived of geometric experience during development. Ulsaker-Janke I; Waaga T; Waaga T; Moser EI; Moser MB Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2310820120. PubMed ID: 37782787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]