These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 30175632)
1. Detection of hydrogen peroxide production in the isolated rat lung using Amplex red. Audi SH; Friedly N; Dash RK; Beyer AM; Clough AV; Jacobs ER Free Radic Res; 2018 Sep; 52(9):1052-1062. PubMed ID: 30175632 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Grivennikova VG; Kareyeva AV; Vinogradov AD Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406 [TBL] [Abstract][Full Text] [Related]
3. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential. Sipos I; Tretter L; Adam-Vizi V Neurochem Res; 2003 Oct; 28(10):1575-81. PubMed ID: 14570403 [TBL] [Abstract][Full Text] [Related]
4. Production of reactive oxygen species by mitochondria: central role of complex III. Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017 [TBL] [Abstract][Full Text] [Related]
5. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Lund BO; Miller DM; Woods JS Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585 [TBL] [Abstract][Full Text] [Related]
6. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Gomes MP; Juneau P Environ Pollut; 2016 Nov; 218():402-409. PubMed ID: 27435612 [TBL] [Abstract][Full Text] [Related]
7. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I. Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332 [TBL] [Abstract][Full Text] [Related]
11. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174 [TBL] [Abstract][Full Text] [Related]
12. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. Gyulkhandanyan AV; Pennefather PS J Neurochem; 2004 Jul; 90(2):405-21. PubMed ID: 15228597 [TBL] [Abstract][Full Text] [Related]
13. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Bolter CJ; Chefurka W Arch Biochem Biophys; 1990 Apr; 278(1):65-72. PubMed ID: 2321971 [TBL] [Abstract][Full Text] [Related]
14. Interaction of alpha-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. Hensley K; Pye QN; Maidt ML; Stewart CA; Robinson KA; Jaffrey F; Floyd RA J Neurochem; 1998 Dec; 71(6):2549-57. PubMed ID: 9832155 [TBL] [Abstract][Full Text] [Related]
15. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells. Forkink M; Basit F; Teixeira J; Swarts HG; Koopman WJH; Willems PHGM Redox Biol; 2015 Dec; 6():607-616. PubMed ID: 26516986 [TBL] [Abstract][Full Text] [Related]
16. Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm. Zuo L; Pasniciuc S; Wright VP; Merola AJ; Clanton TL Antioxid Redox Signal; 2003 Oct; 5(5):667-75. PubMed ID: 14580324 [TBL] [Abstract][Full Text] [Related]
17. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. Starkov AA; Polster BM; Fiskum G J Neurochem; 2002 Oct; 83(1):220-8. PubMed ID: 12358746 [TBL] [Abstract][Full Text] [Related]
18. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents. Zhang JG; Nicholls-Grzemski FA; Tirmenstein MA; Fariss MW Chem Biol Interact; 2001 Dec; 138(3):267-84. PubMed ID: 11714483 [TBL] [Abstract][Full Text] [Related]
19. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. García-Ruiz C; Colell A; Morales A; Kaplowitz N; Fernández-Checa JC Mol Pharmacol; 1995 Nov; 48(5):825-34. PubMed ID: 7476912 [TBL] [Abstract][Full Text] [Related]
20. Effects of partial inhibition of respiratory complex I on H2O 2 production by isolated brain mitochondria in different respiratory states. Michelini LG; Benevento CE; Rossato FA; Siqueira-Santos ES; Castilho RF Neurochem Res; 2014 Dec; 39(12):2419-30. PubMed ID: 25287903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]