These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30175833)

  • 1. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23344-23351. PubMed ID: 30175833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional structure.
    Huang ZM; Huang WQ; Liu SR; Dong TG; Wang G; Wu XK; Qin CJ
    Sci Rep; 2016 Apr; 6():24802. PubMed ID: 27097990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Jan; 23(2):739-46. PubMed ID: 25835833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Mar; 23(6):7924-32. PubMed ID: 25837129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks.
    Millar RW; Dumas DCS; Gallacher KF; Jahandar P; MacGregor C; Myronov M; Paul DJ
    Opt Express; 2017 Oct; 25(21):25374-25385. PubMed ID: 29041205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of tensile strain on low Sn content GeSn lasing.
    Rainko D; Ikonic Z; Elbaz A; von den Driesch N; Stange D; Herth E; Boucaud P; El Kurdi M; Grützmacher D; Buca D
    Sci Rep; 2019 Jan; 9(1):259. PubMed ID: 30670785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman scattering study of GeSn under 〈1 0 0〉 and 〈1 1 0〉 uniaxial stress.
    An S; Tai YC; Lee KC; Shin SH; Cheng HH; Chang GE; Kim M
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34020429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks.
    Schulte-Braucks C; Narimani K; Glass S; von den Driesch N; Hartmann JM; Ikonic Z; Afanas'ev VV; Zhao QT; Mantl S; Buca D
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):9102-9109. PubMed ID: 28221764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Nanoscale Mapping of Short-Range Order in GeSn Alloys.
    Liu S; Covian AC; Wang X; Cline CT; Akey A; Dong W; Yu SQ; Liu J
    Small Methods; 2022 May; 6(5):e2200029. PubMed ID: 35373530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the effect of different n-doping elements on band structure and optical gain of GeSn alloys.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2017 Oct; 19(39):27031-27037. PubMed ID: 28959810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Titanium Nitride/Germanium-Tin Photodetectors Based on Sub-Bandgap Absorption.
    An S; Liao Y; Kim M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61396-61403. PubMed ID: 34851080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications.
    Lin PH; Ghosh S; Chang GE
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the electronic properties of transition-metal trichalcogenides via tensile strain.
    Li M; Dai J; Zeng XC
    Nanoscale; 2015 Oct; 7(37):15385-91. PubMed ID: 26332584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes.
    Wu X; Tian Z; Cong H; Wang Y; Edy R; Huang G; Di Z; Xue C; Mei Y
    Nanotechnology; 2018 Oct; 29(42):42LT02. PubMed ID: 30052202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of direct bandgap type-I GeSn/GeSn double quantum well with improved carrier confinement.
    Grant PC; Margetis J; Du W; Zhou Y; Dou W; Abernathy G; Kuchuk A; Li B; Tolle J; Liu J; Sun G; Soref RA; Mortazavi M; Yu SQ
    Nanotechnology; 2018 Nov; 29(46):465201. PubMed ID: 30191884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile strained direct bandgap GeSn microbridges enabled in GeSn-on-insulator substrates with residual tensile strain.
    Burt D; Zhang L; Jung Y; Joo HJ; Kim Y; Chen M; Son B; Fan W; Ikonic Z; Tan CS; Nam D
    Opt Lett; 2023 Feb; 48(3):735-738. PubMed ID: 36723576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transition and band-structure tuning in InN through uniaxial and biaxial strains.
    Duan Y; Qin L; Shi L; Tang G; Shi H
    J Phys Condens Matter; 2014 Jan; 26(2):025501. PubMed ID: 24305640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Temperature Negative Differential Resistance and High Tunneling Current Density in GeSn Esaki Diodes.
    Liu CY; Tien KY; Chiu PY; Wu YJ; Chuang Y; Kao HS; Li JY
    Adv Mater; 2022 Oct; 34(41):e2203888. PubMed ID: 36030362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-free GeSn nanomembranes enabled by transfer-printing techniques for advanced optoelectronic applications.
    Tai YC; Yeh PL; An S; Cheng HH; Kim M; Chang GE
    Nanotechnology; 2020 Oct; 31(44):445301. PubMed ID: 32674093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.