These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30175833)

  • 41. Density and Capture Cross-Section of Interface Traps in GeSnO2 and GeO2 Grown on Heteroepitaxial GeSn.
    Gupta S; Simoen E; Loo R; Madia O; Lin D; Merckling C; Shimura Y; Conard T; Lauwaert J; Vrielinck H; Heyns M
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13181-6. PubMed ID: 27172051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain.
    Shao RW; Zheng K; Wei B; Zhang YF; Li YJ; Han XD; Zhang Z; Zou J
    Nanoscale; 2014 May; 6(9):4936-41. PubMed ID: 24676099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electroluminescence of GeSn/Ge MQW LEDs on Si substrate.
    Schwartz B; Oehme M; Kostecki K; Widmann D; Gollhofer M; Koerner R; Bechler S; Fischer IA; Wendav T; Kasper E; Schulze J; Kittler M
    Opt Lett; 2015 Jul; 40(13):3209-12. PubMed ID: 26125404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of highly anisotropic electrical conductance of tellurene by strain-engineering.
    Ma H; Hu W; Yang J
    Nanoscale; 2019 Nov; 11(45):21775-21781. PubMed ID: 31701993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study.
    González-García A; López-Pérez W; González-Hernández R; Rodríguez JA; Milośević MV; Peeters FM
    J Phys Condens Matter; 2019 Jul; 31(26):265502. PubMed ID: 30840939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting.
    Steuer O; Schwarz D; Oehme M; Schulze J; Mączko H; Kudrawiec R; Fischer IA; Heller R; Hübner R; Khan MM; Georgiev YM; Zhou S; Helm M; Prucnal S
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36395508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Review of Si-Based GeSn CVD Growth and Optoelectronic Applications.
    Miao Y; Wang G; Kong Z; Xu B; Zhao X; Luo X; Lin H; Dong Y; Lu B; Dong L; Zhou J; Liu J; Radamson HH
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684996
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anisotropic optical properties induced by uniaxial strain of monolayer C
    Chen QY; Liu MY; Cao C; He Y
    RSC Adv; 2019 Apr; 9(23):13133-13144. PubMed ID: 35520782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Band gap engineering of FeS2 under biaxial strain: a first principles study.
    Xiao P; Fan XL; Liu LM; Lau WM
    Phys Chem Chem Phys; 2014 Nov; 16(44):24466-72. PubMed ID: 25308322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES; Ismail R
    Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complete Separation of Carriers in the GeS/SnS Lateral Heterostructure by Uniaxial Tensile Strain.
    Peng L; Wang C; Qian Q; Bi C; Wang S; Huang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40969-40977. PubMed ID: 29083148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strain induced new phase and indirect-direct band gap transition of monolayer InSe.
    Hu T; Zhou J; Dong J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21722-21728. PubMed ID: 28776623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced direct bandgap emission in germanium by micromechanical strain engineering.
    Lim PH; Park S; Ishikawa Y; Wada K
    Opt Express; 2009 Aug; 17(18):16358-65. PubMed ID: 19724635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ge
    Eales TD; Marko IP; Schulz S; O'Halloran E; Ghetmiri S; Du W; Zhou Y; Yu SQ; Margetis J; Tolle J; O'Reilly EP; Sweeney SJ
    Sci Rep; 2019 Oct; 9(1):14077. PubMed ID: 31575881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates.
    Jin L; Zhang D; Zhang H; Fang J; Liao Y; Zhou T; Liu C; Zhong Z; Harris VG
    Sci Rep; 2016 Sep; 6():34030. PubMed ID: 27667259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GeSn resonant-cavity-enhanced photodetectors for efficient photodetection at the 2  µm wavelength band.
    Tsai CH; Huang BJ; Soref RA; Sun G; Cheng HH; Chang GE
    Opt Lett; 2020 Mar; 45(6):1463-1466. PubMed ID: 32163992
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures.
    Timofeev VA; Nikiforov AI; Tuktamyshev AR; Mashanov VI; Loshkarev ID; Bloshkin AA; Gutakovskii AK
    Nanotechnology; 2018 Apr; 29(15):154002. PubMed ID: 29388560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning the electronic properties of bilayer group-IV monochalcogenides by stacking order, strain and an electric field: a computational study.
    Li ZY; Liu MY; Huang Y; Chen QY; Cao C; He Y
    Phys Chem Chem Phys; 2017 Dec; 20(1):214-220. PubMed ID: 29199745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.