These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30175880)

  • 1. Dibutyl succinate, produced by an insect-pathogenic fungus, Isaria javanica pf185, is a metabolite that controls of aphids and a fungal disease, anthracnose.
    Lee YS; Han JH; Kang BR; Kim YC
    Pest Manag Sci; 2019 Mar; 75(3):852-858. PubMed ID: 30175880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Biocontrol Potential of the Entomopathogenic Fungus,
    Kang BR; Han JH; Kim JJ; Kim YC
    Mycobiology; 2018; 46(4):440-447. PubMed ID: 30637153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endophytic
    Bocco R; Lee M; Kim D; Ahn S; Park JW; Lee SY; Han JH
    Insects; 2021 Jul; 12(7):. PubMed ID: 34357291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tobacco Growth Promotion by the Entomopathogenic Fungus,
    Lee YS; Kim YC
    Mycobiology; 2019 Mar; 47(1):126-133. PubMed ID: 31001453
    [No Abstract]   [Full Text] [Related]  

  • 5. Sustainable control of the rice pest, Nilaparvata lugens, using the entomopathogenic fungus Isaria javanica.
    Zhao Q; Ye L; Wang Z; Li Y; Zhang Y; Keyhani NO; Huang Z
    Pest Manag Sci; 2021 Mar; 77(3):1452-1464. PubMed ID: 33128435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entomopathogenic Fungi as Dual Control Agents against Both the Pest
    Yun HG; Kim DJ; Gwak WS; Shin TY; Woo SD
    Mycobiology; 2017 Sep; 45(3):192-198. PubMed ID: 29138624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butyl succinate-mediated control of Bacillus velezensis  ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides.
    Hwang SH; Maung CEH; Noh JS; Cho JY; Kim KY
    J Appl Microbiol; 2023 Nov; 134(11):. PubMed ID: 37903743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insecticidal activity of rhamnolipid isolated from pseudomonas sp. EP-3 against green peach aphid (Myzus persicae).
    Kim SK; Kim YC; Lee S; Kim JC; Yun MY; Kim IS
    J Agric Food Chem; 2011 Feb; 59(3):934-8. PubMed ID: 21192722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspecies variation of Metarhizium brunneum against the green peach aphid, Myzus persicae, provides insight into the complexity of disease progression.
    Reingold V; Kottakota C; Birnbaum N; Goldenberg M; Lebedev G; Ghanim M; Ment D
    Pest Manag Sci; 2021 May; 77(5):2557-2567. PubMed ID: 33486866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of involvement of chitinase in direct toxicity of Beauveria bassiana cultures to the aphid Myzus persicae.
    Cheong PCH; Glare TR; Rostás M; Haines S; Brookes JJ; Ford S
    J Invertebr Pathol; 2020 Jan; 169():107276. PubMed ID: 31715183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae).
    Jandricic SE; Filotas M; Sanderson JP; Wraight SP
    J Invertebr Pathol; 2014 May; 118():34-46. PubMed ID: 24583227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus.
    Niu L; Pan L; Zeng W; Lu Z; Cui G; Fan M; Xu Q; Wang Z; Li G
    BMC Genomics; 2018 Nov; 19(1):846. PubMed ID: 30486776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenicity of the fungus, Verticillium lecanii, to the green peach aphid, Myzus persicae (Hom.: Aphididae).
    Ashouri A; Arzanian N; Askary H; Rasoulian GR
    Commun Agric Appl Biol Sci; 2004; 69(3):205-9. PubMed ID: 15759415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis.
    Nian XG; He YR; Lu LH; Zhao R
    Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virulence of the Bio-Control Fungus Purpureocillium lilacinum Against Myzus persicae (Hemiptera: Aphididae) and Spodoptera frugiperda (Lepidoptera: Noctuidae).
    Liu Z; Liu FF; Li H; Zhang WT; Wang Q; Zhang BX; Sun YX; Rao XJ
    J Econ Entomol; 2022 Apr; 115(2):462-473. PubMed ID: 35089348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus.
    Asaff A; Cerda-García-Rojas C; de la Torre M
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):542-7. PubMed ID: 15696281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite.
    Kang BR; Anderson AJ; Kim YC
    Can J Microbiol; 2019 Mar; 65(3):185-190. PubMed ID: 30398901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and biological implication of time-dose-mortality data for the entomophthoralean fungus, zoophthora anhuiensis, on the green peach aphid myzus persicae.
    Feng MG; Liu CL; Xu JH; Xu Q
    J Invertebr Pathol; 1998 Nov; 72(3):246-51. PubMed ID: 9784347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory and field evaluations of entomopathogenic Lecanicillium attenuatum CNU-23 for control of green peach aphid (Myzus persicae).
    Kim HY; Lee HB; Kim YC; Kim IS
    J Microbiol Biotechnol; 2008 Dec; 18(12):1915-8. PubMed ID: 19131693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species.
    Ishii H; Zhen F; Hu M; Li X; Schnabel G
    Pest Manag Sci; 2016 Oct; 72(10):1844-53. PubMed ID: 26732510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.