These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30175911)

  • 21. Boundary Slip of Oil Molecules at MoS
    Li J; Li J; Yi S; Wang K
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8644-8653. PubMed ID: 35119817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Adaptive Macroscale Superlubricity Based on the Tribocatalytic Properties of Partially Oxidized Black Phosphorus.
    Gao K; Bin W; Berman D; Ren Y; Luo J; Xie G
    Nano Lett; 2023 Aug; 23(15):6823-6830. PubMed ID: 37486802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on the Superlubricity Behavior of Ions under External Electric Fields at Steel Interfaces.
    Ge X; Wu X; Shi Q; Song S; Liu Y; Wang W
    Langmuir; 2023 Dec; 39(51):18757-18767. PubMed ID: 38096544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel comb-typed poly(oligo(ethylene glycol) methylether acrylate) as an excellent aqueous lubricant.
    Jia W; Tian J; Bai P; Li S; Zeng H; Zhang W; Tian Y
    J Colloid Interface Sci; 2019 Mar; 539():342-350. PubMed ID: 30594009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
    Yang X; Li R; Wang Y; Zhang J
    Adv Mater; 2023 Sep; 35(39):e2303580. PubMed ID: 37354130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets.
    Wang H; Liu Y; Liu W; Liu Y; Wang K; Li J; Ma T; Eryilmaz OL; Shi Y; Erdemir A; Luo J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20249-20256. PubMed ID: 31083968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.
    Li J; Zhang C; Cheng P; Chen X; Wang W; Luo J
    Langmuir; 2016 Jun; 32(22):5593-9. PubMed ID: 27192019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the hydration friction of ionic interfaces at the atomic scale.
    Li Z; Liu Q; Zhang D; Wang Y; Zhang Y; Li Q; Dong M
    Nanoscale Horiz; 2022 Mar; 7(4):368-375. PubMed ID: 35195643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus.
    Tang G; Wu Z; Su F; Wang H; Xu X; Li Q; Ma G; Chu PK
    Nano Lett; 2021 Jun; 21(12):5308-5315. PubMed ID: 34076433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films.
    Chen X; Zhang C; Kato T; Yang XA; Wu S; Wang R; Nosaka M; Luo J
    Nat Commun; 2017 Nov; 8(1):1675. PubMed ID: 29162811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origins of hydration lubrication.
    Ma L; Gaisinskaya-Kipnis A; Kampf N; Klein J
    Nat Commun; 2015 Jan; 6():6060. PubMed ID: 25585501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids.
    Li J; Zhang C; Luo J
    Langmuir; 2013 Apr; 29(17):5239-45. PubMed ID: 23597021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genesis of Superlow Friction in Strengthening Si-DLC/PLC Nanostructured Multilayer Films for Robust Superlubricity at Ultrahigh Contact Stress.
    Deng W; Wang Y; Yu Q; Chen X; Huang P; Yu X; Qi W; Li X; Zhang C; Luo J
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51564-51578. PubMed ID: 36322023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydration lubrication: exploring a new paradigm.
    Gaisinskaya A; Ma L; Silbert G; Sorkin R; Tairy O; Goldberg R; Kampf N; Klein J
    Faraday Discuss; 2012; 156():217-33; discussion 293-309. PubMed ID: 23285630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal.
    Wen X; Bai P; Li Y; Cao H; Li S; Wang B; Fang J; Meng Y; Ma L; Tian Y
    Langmuir; 2021 Mar; 37(12):3628-3636. PubMed ID: 33733780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unravelling High-Load Superlubricity of Ionic Liquid Analogues by
    Liang H; Yin T; Liu M; Fu C; Xia X; Zou S; Hua X; Fu Y; Bu Y
    J Phys Chem Lett; 2023 Jan; 14(2):453-459. PubMed ID: 36622949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.