These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular and structural insights into FaEXPA5, an alpha-expansin protein related with cell wall disassembly during ripening of strawberry fruit. Valenzuela-Riffo F; Parra-Palma C; Ramos P; Morales-Quintana L Plant Physiol Biochem; 2020 Sep; 154():581-589. PubMed ID: 32711363 [TBL] [Abstract][Full Text] [Related]
3. Computational study of FaEXPA1, a strawberry alpha expansin protein, through molecular modeling and molecular dynamics simulation studies. Valenzuela-Riffo F; Ramos P; Morales-Quintana L Comput Biol Chem; 2018 Oct; 76():79-86. PubMed ID: 29982166 [TBL] [Abstract][Full Text] [Related]
4. Characterization of FcXTH2, a Novel Xyloglucan Endotransglycosylase/Hydrolase Enzyme of Chilean Strawberry with Hydrolase Activity. Morales-Quintana L; Beltrán D; Mendez-Yañez Á; Valenzuela-Riffo F; Herrera R; Moya-León MA Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403246 [TBL] [Abstract][Full Text] [Related]
5. In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies. Gaete-Eastman C; Morales-Quintana L; Herrera R; Moya-León MA J Mol Model; 2015 May; 21(5):115. PubMed ID: 25863690 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Carrasco-Orellana C; Stappung Y; Mendez-Yañez A; Allan AC; Espley RV; Plunkett BJ; Moya-Leon MA; Herrera R Sci Rep; 2018 Jul; 8(1):10524. PubMed ID: 30002382 [TBL] [Abstract][Full Text] [Related]
7. Study of the structure and binding site features of FaEXPA2, an α-expansin protein involved in strawberry fruit softening. Valenzuela-Riffo F; Morales-Quintana L Comput Biol Chem; 2020 May; 87():107279. PubMed ID: 32505880 [TBL] [Abstract][Full Text] [Related]
8. Isolation of a rhamnogalacturonan lyase expressed during ripening of the Chilean strawberry fruit and its biochemical characterization. Méndez-Yañez A; González M; Carrasco-Orellana C; Herrera R; Moya-León MA Plant Physiol Biochem; 2020 Jan; 146():411-419. PubMed ID: 31805495 [TBL] [Abstract][Full Text] [Related]
9. An expansin gene expressed in ripening strawberry fruit. Civello PM; Powell AL; Sabehat A; Bennett AB Plant Physiol; 1999 Dec; 121(4):1273-80. PubMed ID: 10594114 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Nardi CF; Villarreal NM; Rossi FR; Martínez S; Martínez GA; Civello PM Plant Mol Biol; 2015 May; 88(1-2):101-17. PubMed ID: 25837738 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Wang T; Park YB; Caporini MA; Rosay M; Zhong L; Cosgrove DJ; Hong M Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16444-9. PubMed ID: 24065828 [TBL] [Abstract][Full Text] [Related]
12. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. McQueen-Mason SJ; Cosgrove DJ Plant Physiol; 1995 Jan; 107(1):87-100. PubMed ID: 11536663 [TBL] [Abstract][Full Text] [Related]
13. Glycosylation is important for FcXTH1 activity as judged by its structural and biochemical characterization. Méndez-Yañez Á; Beltrán D; Campano-Romero C; Molinett S; Herrera R; Moya-León MA; Morales-Quintana L Plant Physiol Biochem; 2017 Oct; 119():200-210. PubMed ID: 28898745 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional and computational study of expansins differentially expressed in response to inclination in radiata pine. Mateluna P; Valenzuela-Riffo F; Morales-Quintana L; Herrera R; Ramos P Plant Physiol Biochem; 2017 Jun; 115():12-24. PubMed ID: 28300728 [TBL] [Abstract][Full Text] [Related]
15. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues. Opazo MC; Lizana R; Stappung Y; Davis TM; Herrera R; Moya-León MA BMC Genomics; 2017 Nov; 18(1):852. PubMed ID: 29115918 [TBL] [Abstract][Full Text] [Related]
16. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. Zamorano-Curaqueo M; Valenzuela-Riffo F; Herrera R; Moya-León MA Plant Physiol Biochem; 2024 Oct; 215():108985. PubMed ID: 39084168 [TBL] [Abstract][Full Text] [Related]
17. The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities "in vitro". Nardi C; Escudero C; Villarreal N; Martínez G; Civello PM J Plant Res; 2013 Jan; 126(1):151-9. PubMed ID: 22752710 [TBL] [Abstract][Full Text] [Related]
18. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Pimentel P; Salvatierra A; Moya-León MA; Herrera R J Plant Physiol; 2010 Sep; 167(14):1179-87. PubMed ID: 20413181 [TBL] [Abstract][Full Text] [Related]
19. Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Salvatierra A; Pimentel P; Moya-Leon MA; Caligari PD; Herrera R Phytochemistry; 2010 Nov; 71(16):1839-47. PubMed ID: 20800857 [TBL] [Abstract][Full Text] [Related]
20. Characterization of two divergent cDNAs encoding xyloglucan endotransglycosylase/hydrolase (XTH) expressed in Fragaria chiloensis fruit. Opazo MC; Figueroa CR; Henríquez J; Herrera R; Bruno C; Valenzuela PD; Moya-León MA Plant Sci; 2010 Nov; 179(5):479-88. PubMed ID: 21802606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]