These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30176008)

  • 1. Rodent Behavioral Testing to Assess Functional Deficits Caused by Microelectrode Implantation in the Rat Motor Cortex.
    Goss-Varley M; Shoffstall AJ; Dona KR; McMahon JA; Lindner SC; Ereifej ES; Capadona JR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30176008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microelectrode implantation in motor cortex causes fine motor deficit: Implications on potential considerations to Brain Computer Interfacing and Human Augmentation.
    Goss-Varley M; Dona KR; McMahon JA; Shoffstall AJ; Ereifej ES; Lindner SC; Capadona JR
    Sci Rep; 2017 Nov; 7(1):15254. PubMed ID: 29127346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantation and testing of WFMA stimulators in macaque.
    Trovk PR; Frim D; Roitberg B; Towle VL; Takahashi K; Suh S; Bak M; Bredeson S; Zhe Hu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4499-4502. PubMed ID: 28269277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional changes of deep layer pyramidal neurons surrounding microelectrode arrays implanted in rat motor cortex.
    Gregory BA; Thompson CH; Salatino JW; Railing MJ; Zimmerman AF; Gupta B; Williams K; Beatty JA; Cox CL; Purcell EK
    Acta Biomater; 2023 Sep; 168():429-439. PubMed ID: 37499727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
    Simeral JD; Kim SP; Black MJ; Donoghue JP; Hochberg LR
    J Neural Eng; 2011 Apr; 8(2):025027. PubMed ID: 21436513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays.
    Molina-Luna K; Buitrago MM; Hertler B; Schubring M; Haiss F; Nisch W; Schulz JB; Luft AR
    J Neurosci Methods; 2007 Mar; 161(1):118-25. PubMed ID: 17178423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses.
    Parikh H; Marzullo TC; Kipke DR
    J Neural Eng; 2009 Apr; 6(2):026004. PubMed ID: 19255460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning.
    Ledochowitsch P; Koralek AC; Moses D; Carmena JM; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5622-5. PubMed ID: 24111012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces.
    Leuthardt EC; Freudenberg Z; Bundy D; Roland J
    Neurosurg Focus; 2009 Jul; 27(1):E10. PubMed ID: 19569885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes.
    Lam DV; Javadekar A; Patil N; Yu M; Li L; Menendez DM; Gupta AS; Capadona JR; Shoffstall AJ
    Acta Biomater; 2023 Aug; 166():278-290. PubMed ID: 37211307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.
    Zhang H; Patel PR; Xie Z; Swanson SD; Wang X; Kotov NA
    ACS Nano; 2013 Sep; 7(9):7619-29. PubMed ID: 23930825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation.
    Young D; Willett F; Memberg WD; Murphy B; Walter B; Sweet J; Miller J; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2018 Apr; 15(2):026014. PubMed ID: 29199642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex.
    Jorge A; Royston DA; Tyler-Kabara EC; Boninger ML; Collinger JL
    Neurosurgery; 2020 Sep; 87(4):630-638. PubMed ID: 32140722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes.
    Potter KA; Buck AC; Self WK; Callanan ME; Sunil S; Capadona JR
    Biomaterials; 2013 Sep; 34(29):7001-15. PubMed ID: 23791503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.