These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 30176382)
1. High order aberration calculations of a quadrupole-octupole corrector using a differential algebra method. Kang Y; Wei M; Zhao J Ultramicroscopy; 2018 Dec; 195():21-24. PubMed ID: 30176382 [TBL] [Abstract][Full Text] [Related]
3. First- and third-order chromatic aberrations in Glaser magnetic lens for object magnetic immersion. Amer A; Ahmad AK Heliyon; 2023 Dec; 9(12):e22825. PubMed ID: 38125542 [TBL] [Abstract][Full Text] [Related]
4. High order aberrations calculations of Wien filters using differential algebra methods. Kang Y; Hu H; Zhao J Ultramicroscopy; 2020 Mar; 210():112924. PubMed ID: 31923780 [TBL] [Abstract][Full Text] [Related]
5. Third-order aberration theory of Wien filters for monochromators and aberration correctors. Tsuno K; Ioanoviciu D; Martínez G J Microsc; 2005 Mar; 217(Pt 3):205-15. PubMed ID: 15725124 [TBL] [Abstract][Full Text] [Related]
6. Differential algebraic method for aberration analysis of typical electrostatic lenses. Liu Z Ultramicroscopy; 2006 Feb; 106(3):220-32. PubMed ID: 16125845 [TBL] [Abstract][Full Text] [Related]
7. Third-rank chromatic aberrations of electron lenses. Liu Z Ultramicroscopy; 2018 Feb; 185():27-31. PubMed ID: 29175744 [TBL] [Abstract][Full Text] [Related]
8. Correction of parasitic aberrations of hexapole corrector using differential algebra method. Radlička T Ultramicroscopy; 2019 Sep; 204():81-90. PubMed ID: 31132735 [TBL] [Abstract][Full Text] [Related]
9. Design of electrostatic lenses through genetic algorithm and particle swarm optimisation methods integrated with differential algebra. Sabouri A; Perez-Martinez CS Ultramicroscopy; 2024 Dec; 266():114024. PubMed ID: 39186919 [TBL] [Abstract][Full Text] [Related]
10. Fifth-order asymptotic geometric aberrations of electron lenses. Liu Z Ultramicroscopy; 2023 Dec; 254():113776. PubMed ID: 37544853 [TBL] [Abstract][Full Text] [Related]
11. Axial geometrical aberration correction up to 5th order with N-SYLC. Hoque S; Ito H; Takaoka A; Nishi R Ultramicroscopy; 2017 Nov; 182():68-80. PubMed ID: 28666137 [TBL] [Abstract][Full Text] [Related]
12. Towards sub-0.5 A electron beams. Krivanek OL; Nellist PD; Dellby N; Murfitt MF; Szilagyi Z Ultramicroscopy; 2003 Sep; 96(3-4):229-37. PubMed ID: 12871791 [TBL] [Abstract][Full Text] [Related]
13. Calculation of aberration coefficients by ray tracing. Oral M; Lencová B Ultramicroscopy; 2009 Oct; 109(11):1365-73. PubMed ID: 19647367 [TBL] [Abstract][Full Text] [Related]
15. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations. Bimurzaev SB; Aldiyarov NU; Yakushev EM Microscopy (Oxf); 2017 Oct; 66(5):356-365. PubMed ID: 29016920 [TBL] [Abstract][Full Text] [Related]
16. Control of parasitic aberrations in multipole optics. Batson PE J Electron Microsc (Tokyo); 2009 Jun; 58(3):123-30. PubMed ID: 19264793 [TBL] [Abstract][Full Text] [Related]
17. Design for an aberration corrected scanning electron microscope using miniature electron mirrors. Dohi H; Kruit P Ultramicroscopy; 2018 Jun; 189():1-23. PubMed ID: 29574382 [TBL] [Abstract][Full Text] [Related]
19. Accurate Calculations of Properties of the Two-Tube Electrostatic Lens. I. Improved Digital Methods for the Precise Calculation of Electric Fields and Trajectories. Natali S; Di Chio D; Kuyatt CE J Res Natl Bur Stand A Phys Chem; 1972; 76A(1):27-35. PubMed ID: 34565836 [TBL] [Abstract][Full Text] [Related]