BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30176435)

  • 1. NO and SO
    Yanik J; Duman G; Karlström O; Brink A
    J Environ Manage; 2018 Dec; 227():155-161. PubMed ID: 30176435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grindability and combustion behavior of coal and torrefied biomass blends.
    Gil MV; García R; Pevida C; Rubiera F
    Bioresour Technol; 2015 Sep; 191():205-12. PubMed ID: 25997009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.
    Onenc S; Retschitzegger S; Evic N; Kienzl N; Yanik J
    Waste Manag; 2018 Jan; 71():192-199. PubMed ID: 29097128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the co-firing characteristics of bamboo wastes and coal through cone calorimetry and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy.
    Xiang H; Feng Z; Yang J; Hu W; Liang F; Yang X; Zhang T; Mi B; Liu Z
    Waste Manag Res; 2020 Aug; 38(8):896-902. PubMed ID: 31868133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions.
    Alves JLF; da Silva JCG; Sellin N; Prá FB; Sapelini C; Souza O; Marangoni C
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25733-25747. PubMed ID: 34846654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cleaner co-combustion of lignite-biomass-waste blends by utilising inhibiting compounds of toxic emissions.
    Skodras G; Palladas A; Kaldis SP; Sakellaropoulos GP
    Chemosphere; 2007 Apr; 67(9):S191-7. PubMed ID: 17204304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics.
    Goldfarb JL; Liu C
    Bioresour Technol; 2013 Dec; 149():208-15. PubMed ID: 24113546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emission characteristics of co-combustion of sewage sludge with olive cake and lignite coal in a circulating fluidized bed.
    Toraman OY; Topal H; Bayat O; Atimtay AT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):973-86. PubMed ID: 15137713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.
    Ullah H; Liu G; Yousaf B; Ali MU; Abbas Q; Zhou C
    Bioresour Technol; 2017 Dec; 245(Pt A):73-80. PubMed ID: 28892708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler.
    Chang CC; Chen YH; Chang WR; Wu CH; Chen YH; Chang CY; Yuan MH; Shie JL; Li YS; Chiang SW; Yang TY; Lin FC; Ko CH; Liu BL; Liu KW; Wang SG
    J Air Waste Manag Assoc; 2019 Dec; 69(12):1467-1478. PubMed ID: 31524083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.
    Xie JJ; Yang XM; Zhang L; Ding TL; Song WL; Lin WG
    J Environ Sci (China); 2007; 19(1):109-16. PubMed ID: 17913163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite.
    Liu Z; Balasubramanian R
    Bioresour Technol; 2013 Oct; 146():371-378. PubMed ID: 23948274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.
    Varol M; Atimtay AT
    Bioresour Technol; 2015 Dec; 198():325-31. PubMed ID: 26407346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion performance and emissions from torrefied and water washed biomass using a kg-scale burner.
    Chen CY; Chen WH; Hung CH
    J Hazard Mater; 2021 Jan; 402():123468. PubMed ID: 32712360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Combustion and NO/SO
    Yang X; Zhu W; Li Z; Xu L; Zhu S; Tian J; Wang Z; Shen B
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effects of iron compounds on SO2 and NO emissions in coal combustion process].
    Liu Y; Che D; Hui S; Xu T
    Huan Jing Ke Xue; 2001 Mar; 22(2):25-30. PubMed ID: 11432062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.
    Phanphanich M; Mani S
    Bioresour Technol; 2011 Jan; 102(2):1246-53. PubMed ID: 20801023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.