These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30176435)

  • 21. Influence of calcium content of biomass-based materials on simultaneous NOx and SO2 reduction.
    Pisupati SV; Bhalla S
    Environ Sci Technol; 2008 Apr; 42(7):2509-14. PubMed ID: 18504989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses.
    Brassard P; Palacios JH; Godbout S; Bussières D; Lagacé R; Larouche JP; Pelletier F
    Bioresour Technol; 2014 Mar; 155():300-6. PubMed ID: 24462881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.
    Mei Y; Liu R; Yang Q; Yang H; Shao J; Draper C; Zhang S; Chen H
    Bioresour Technol; 2015 Feb; 177():355-60. PubMed ID: 25497055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite.
    Liu Z; Balasubramanian R
    Bioresour Technol; 2014 Jan; 151():85-90. PubMed ID: 24211487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of free calcium oxide content of fly ash on dust and sulfur dioxide emissions in a lignite-fired power plant.
    Sotiropoulos D; Georgakopoulos A; Kolovos N
    J Air Waste Manag Assoc; 2005 Jul; 55(7):1042-9. PubMed ID: 16111145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxytree Pruned Biomass Torrefaction: Mathematical Models of the Influence of Temperature and Residence Time on Fuel Properties Improvement.
    Świechowski K; Liszewski M; Bąbelewski P; Koziel JA; Białowiec A
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31295902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combustion of thermochemically torrefied sugar cane bagasse.
    Valix M; Katyal S; Cheung WH
    Bioresour Technol; 2017 Jan; 223():202-209. PubMed ID: 27792930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural desulfurization in coal-fired units using Greek lignite.
    Konidaris DN
    J Air Waste Manag Assoc; 2010 Oct; 60(10):1269-73. PubMed ID: 21090555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the combustible properties of bamboo by torrefaction.
    Rousset P; Aguiar C; Labbé N; Commandré JM
    Bioresour Technol; 2011 Sep; 102(17):8225-31. PubMed ID: 21703854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.
    Ge S; Bai Z; Liu W; Zhu T; Wang T; Qing S; Zhang J
    J Air Waste Manag Assoc; 2001 Apr; 51(4):524-33. PubMed ID: 11321909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pelletization and combustion properties of torrefied Camellia shell via dry and hydrothermal torrefaction: A comparative evaluation.
    Tu R; Jiang E; Yan S; Xu X; Rao S
    Bioresour Technol; 2018 Sep; 264():78-89. PubMed ID: 29787884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Torrefaction of herbal medicine wastes: Characterization of the physicochemical properties and combustion behaviors.
    Xin S; Huang F; Liu X; Mi T; Xu Q
    Bioresour Technol; 2019 Sep; 287():121408. PubMed ID: 31085428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions.
    Chao CY; Kwong PC; Wang JH; Cheung CW; Kendall G
    Bioresour Technol; 2008 Jan; 99(1):83-93. PubMed ID: 17257831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating co-combustion characteristics of bamboo and wood.
    Liang F; Wang R; Jiang C; Yang X; Zhang T; Hu W; Mi B; Liu Z
    Bioresour Technol; 2017 Nov; 243():556-565. PubMed ID: 28704736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions.
    Yang Z; Zhang Y; Liu L; Wang X; Zhang Z
    Waste Manag; 2016 Apr; 50():213-21. PubMed ID: 26584559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combustion studies of high moisture content waste in a fluidised bed.
    Suksankraisorn K; Patumsawad S; Fungtammasan B
    Waste Manag; 2003; 23(5):433-9. PubMed ID: 12893016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.
    Haykiri-Acma H; Yaman S
    Waste Manag; 2008 Nov; 28(11):2077-84. PubMed ID: 17964772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combustion behaviour of Olive pruning/animal manure blends in a fluidized bed combustor.
    Vamvuka D; Alloimonos N
    Heliyon; 2017 Sep; 3(9):e00385. PubMed ID: 28948236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal exploitation of wastes with lignite for energy production.
    Grammelis P; Kakaras E; Skodras G
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1301-11. PubMed ID: 14649749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.