These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30176450)
1. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Chen H; Zhang W; Nie N; Guo Y Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450 [TBL] [Abstract][Full Text] [Related]
2. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Khorrami B; Gündüz O Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880 [TBL] [Abstract][Full Text] [Related]
4. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463 [TBL] [Abstract][Full Text] [Related]
5. Spatio-Temporal Variations in Groundwater Revealed by GRACE and Its Driving Factors in the Huang-Huai-Hai Plain, China. Su Y; Guo B; Zhou Z; Zhong Y; Min L Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050517 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products. Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611 [TBL] [Abstract][Full Text] [Related]
7. Bridging Terrestrial Water Storage Anomaly During GRACE/GRACE-FO Gap Using SSA Method: A Case Study in China. Li W; Wang W; Zhang C; Wen H; Zhong Y; Zhu Y; Li Z Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554328 [TBL] [Abstract][Full Text] [Related]
8. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Jing W; Zhang P; Zhao X Sci Rep; 2019 Feb; 9(1):1765. PubMed ID: 30741984 [TBL] [Abstract][Full Text] [Related]
9. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin. Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709 [TBL] [Abstract][Full Text] [Related]
10. Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992-2016. Khaki M; Awange J; Forootan E; Kuhn M Sci Total Environ; 2018 Dec; 645():1509-1521. PubMed ID: 30248872 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Terrestrial Water Storage Changes and Major Driving Factors Analysis in Inner Mongolia, China. Guo Y; Gan F; Yan B; Bai J; Xing N; Zhuo Y Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560032 [TBL] [Abstract][Full Text] [Related]
12. Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods. Sabzehee F; Amiri-Simkooei AR; Iran-Pour S; Vishwakarma BD; Kerachian R J Environ Manage; 2023 Mar; 330():117180. PubMed ID: 36603260 [TBL] [Abstract][Full Text] [Related]
13. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China. Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033 [TBL] [Abstract][Full Text] [Related]
14. The analysis on groundwater storage variations from GRACE/GRACE-FO in recent 20 years driven by influencing factors and prediction in Shandong Province, China. Li W; Bao L; Yao G; Wang F; Guo Q; Zhu J; Zhu J; Wang Z; Bi J; Zhu C; Zhong Y; Lu S Sci Rep; 2024 Mar; 14(1):5819. PubMed ID: 38461310 [TBL] [Abstract][Full Text] [Related]
15. Bridging the gap between GRACE and GRACE-FO missions with deep learning aided water storage simulations. Uz M; Atman KG; Akyilmaz O; Shum CK; Keleş M; Ay T; Tandoğdu B; Zhang Y; Mercan H Sci Total Environ; 2022 Jul; 830():154701. PubMed ID: 35337878 [TBL] [Abstract][Full Text] [Related]
16. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India. Girotto M; De Lannoy GJM; Reichle RH; Rodell M; Draper C; Bhanja SN; Mukherjee A Geophys Res Lett; 2017 May; 44(9):4107-4115. PubMed ID: 29643570 [TBL] [Abstract][Full Text] [Related]
17. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India. Satish Kumar K; Venkata Rathnam E; Sridhar V Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal distribution of groundwater drought using GRACE-based satellite estimates: a case study of Lower Gangetic Basin, India. Nandi S; Biswas S Environ Monit Assess; 2024 Jan; 196(2):151. PubMed ID: 38225529 [TBL] [Abstract][Full Text] [Related]
19. Impacts of Human Activities and Climate Change on Water Storage Changes in Shandong Province, China. Deng L; Han Z; Pu W; Bao R; Wang Z; Wu Q; Qiao J Environ Sci Pollut Res Int; 2022 May; 29(23):35365-35381. PubMed ID: 35060057 [TBL] [Abstract][Full Text] [Related]
20. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Scanlon BR; Zhang Z; Save H; Sun AY; Müller Schmied H; van Beek LPH; Wiese DN; Wada Y; Long D; Reedy RC; Longuevergne L; Döll P; Bierkens MFP Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1080-E1089. PubMed ID: 29358394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]