BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30176467)

  • 21. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress.
    Yue J; Sun X; Duan X; Sun C; Chen H; Sun H; Zhang L
    Environ Int; 2023 Feb; 172():107749. PubMed ID: 36680801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate.
    Zhong X; Yu Y; Wang C; Zhu Q; Wu J; Ke W; Ji D; Niu C; Yang X; Wei Y
    J Hazard Mater; 2021 Feb; 404(Pt B):124111. PubMed ID: 33189059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis.
    Ye J; Zhao H; Yin H; Peng H; Tang L; Gao J; Ma Y
    Chemosphere; 2014 Jun; 105():62-7. PubMed ID: 24388446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Isolation of an effective benzo [a] pyrene degrading strain and its degradation characteristics].
    Cai H; Yin H; Ye JS; Chang JJ; Peng H; Zhang N; He BY
    Huan Jing Ke Xue; 2013 May; 34(5):1937-44. PubMed ID: 23914551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure.
    Zheng X; Xu F; Chen K; Zeng Y; Luo X; Chen S; Mai B; Covaci A
    Environ Int; 2015 May; 78():1-7. PubMed ID: 25677852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Biodegradation of Pyrene by Intact Cells and Spores of Brevibacillus brevis].
    Liu ZC; Ye JS; Peng H; Liu ZH; Deng TJ; Yin H; Liao LP
    Huan Jing Ke Xue; 2015 May; 36(5):1763-8. PubMed ID: 26314128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.
    Xiong J; An T; Li G; Peng P
    Chemosphere; 2017 Oct; 184():120-126. PubMed ID: 28586652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Levels of Urinary Metabolites of Organophosphate Flame Retardants, TDCIPP, and TPHP, in Pregnant Women in Shanghai.
    Feng L; Ouyang F; Liu L; Wang X; Wang X; Li YJ; Murtha A; Shen H; Zhang J; Zhang JJ
    J Environ Public Health; 2016; 2016():9416054. PubMed ID: 28115951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nail polish as a source of exposure to triphenyl phosphate.
    Mendelsohn E; Hagopian A; Hoffman K; Butt CM; Lorenzo A; Congleton J; Webster TF; Stapleton HM
    Environ Int; 2016 Jan; 86():45-51. PubMed ID: 26485058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of triphenyl phosphate (TPhP) by CoFe
    Song Q; Feng Y; Wang Z; Liu G; Lv W
    Sci Total Environ; 2019 Sep; 681():331-338. PubMed ID: 31121397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis.
    Ye J; Yin H; Peng H; Bai J; Xie D; Wang L
    Bioresour Technol; 2013 Feb; 129():236-41. PubMed ID: 23247152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing biotransformation products and pathways of the flame retardant triphenyl phosphate in Daphnia magna using non-target screening.
    Choi Y; Jeon J; Choi Y; Kim SD
    Sci Total Environ; 2020 Mar; 708():135106. PubMed ID: 31791763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Triphenyl phosphate disrupts placental tryptophan metabolism by activating MAOA/ROS/NFκB.
    Lu X; Hong J; Zhang J; Liu Q; Liao G; Shi Y; Tang H; Liu X
    Sci Total Environ; 2023 Dec; 904():166688. PubMed ID: 37659542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytotoxic and genotoxic effects of triphenyl phosphate on root tip cells of Allium cepa L.
    Aslantürk ÖS
    Toxicol In Vitro; 2024 Feb; 94():105734. PubMed ID: 37981031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atmospheric chemical reactions of alternatives of polybrominated diphenyl ethers initiated by OH: A case study on triphenyl phosphate.
    Yu Q; Xie HB; Chen J
    Sci Total Environ; 2016 Nov; 571():1105-14. PubMed ID: 27457671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity of triphenyl phosphate toward the marine rotifer Brachionus plicatilis: Changes in key life-history traits, rotifer-algae population dynamics and the metabolomic response.
    Sun Z; Ma W; Tang X; Zhang X; Yang Y; Zhang X
    Ecotoxicol Environ Saf; 2022 Aug; 241():113731. PubMed ID: 35688001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate.
    Zhang Q; Ji S; Chai L; Yang F; Zhao M; Liu W; Schüürmann G; Ji L
    Environ Sci Technol; 2018 Dec; 52(24):14411-14421. PubMed ID: 30421920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna.
    Yuan S; Li H; Dang Y; Liu C
    Aquat Toxicol; 2018 Feb; 195():58-66. PubMed ID: 29287174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake, Deposition, and Metabolism of Triphenyl Phosphate in Embryonated Eggs and Chicks of Japanese Quail (Coturnix japonica).
    Marteinson S; Guigueno MF; Fernie KJ; Head JA; Chu S; Letcher RJ
    Environ Toxicol Chem; 2020 Mar; 39(3):565-573. PubMed ID: 31756765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of triphenyl phosphate on ciliate protozoa Tetrahymena thermophila following acute exposure and sub-chronic exposure.
    Hao H; Dang Y; Chen S; Sun Q; Kong R; Cheng S; Liu C
    Ecotoxicol Environ Saf; 2020 Sep; 200():110757. PubMed ID: 32454264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.