BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30176491)

  • 1. Uptake and accumulation of metals in Spartina alterniflora salt marshes from a South American estuary.
    Negrin VL; Botté SE; La Colla NS; Marcovecchio JE
    Sci Total Environ; 2019 Feb; 649():808-820. PubMed ID: 30176491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating metal phytorremediation and biondication potential of Spartina alterniflora in a South American estuary.
    Negrin VL; La Colla NS; Schwab F; Domini C; Botté SE
    Mar Environ Res; 2024 Jan; 193():106292. PubMed ID: 38064897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation of metals in Spartina alterniflora salt marshes in the estuary of the World's Largest Choked Lagoon.
    Moreira LL; Tavella RA; da Silva Bonifácio A; de Lima Brum R; da Silva Freitas L; da Rosa Moraes NG; Fiasconaro ML; Ramires PF; Penteado JO; Baisch PRM; da Silva Júnior FMR
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):26880-26894. PubMed ID: 38456979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China.
    Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Distribution patterns and pollution assessments of heavy metals in the Spartina alterniflora salt-marsh wetland of Rudong, Jiangsu province].
    Zhang LH; Du YF; Wang DD; Gao S; Gao WH
    Huan Jing Ke Xue; 2014 Jun; 35(6):2401-10. PubMed ID: 25158523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetland plants as indicators of heavy metal contamination.
    Phillips DP; Human LRD; Adams JB
    Mar Pollut Bull; 2015 Mar; 92(1-2):227-232. PubMed ID: 25599629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China.
    Wang Y; Zhou L; Zheng X; Qian P; Wu Y
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1675-85. PubMed ID: 22821343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed).
    Windhamt L; Weist JS; Weis P
    Mar Pollut Bull; 2001 Oct; 42(10):811-6. PubMed ID: 11693635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China.
    Chai M; Shi F; Li R; Shen X
    Mar Pollut Bull; 2014 Jul; 84(1-2):115-24. PubMed ID: 24930737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of Spartina alterniflora and concomitant metal release dynamics in a tidal environment.
    Yan Z; Xu Y; Zhang Q; Qu J; Li X
    Sci Total Environ; 2019 May; 663():867-877. PubMed ID: 30738266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron plaque formation and heavy metal uptake in Spartina alterniflora at different tidal levels and waterlogging conditions.
    Xu Y; Sun X; Zhang Q; Li X; Yan Z
    Ecotoxicol Environ Saf; 2018 May; 153():91-100. PubMed ID: 29407744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France).
    Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G
    Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal biomonitoring in a Patagonian salt marsh.
    Marinho CH; Giarratano E; Gil MN
    Environ Monit Assess; 2018 Sep; 190(10):598. PubMed ID: 30238277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal).
    Pereira P; Caçador I; Vale C; Caetano M; Costa AL
    Sci Total Environ; 2007 Jul; 380(1-3):93-101. PubMed ID: 17316771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China.
    Sun Z; Mou X; Sun W
    Chemosphere; 2016 Mar; 147():163-72. PubMed ID: 26766352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.