These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 30176545)
1. Electroanalytical characterization of the direct Marinobacter hydrocarbonoclasticus nitric oxide reductase-catalysed nitric oxide and dioxygen reduction. Gomes FO; Maia LB; Cordas C; Moura I; Delerue-Matos C; Moura JJG; Morais S Bioelectrochemistry; 2019 Feb; 125():8-14. PubMed ID: 30176545 [TBL] [Abstract][Full Text] [Related]
2. Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Gomes FO; Maia LB; Loureiro JA; Pereira MC; Delerue-Matos C; Moura I; Moura JJG; Morais S Bioelectrochemistry; 2019 Jun; 127():76-86. PubMed ID: 30745281 [TBL] [Abstract][Full Text] [Related]
3. Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus. Ramos S; Almeida RM; Cordas CM; Moura JJG; Pauleta SR; Moura I J Inorg Biochem; 2017 Dec; 177():402-411. PubMed ID: 28942900 [TBL] [Abstract][Full Text] [Related]
4. Steady-state kinetics with nitric oxide reductase (NOR): new considerations on substrate inhibition profile and catalytic mechanism. Duarte AG; Cordas CM; Moura JJ; Moura I Biochim Biophys Acta; 2014 Mar; 1837(3):375-84. PubMed ID: 24412239 [TBL] [Abstract][Full Text] [Related]
5. Insights into the mechanism of nitric oxide reductase from a Fe Kahle M; Blomberg MRA; Jareck S; Ädelroth P FEBS Lett; 2019 Jun; 593(12):1351-1359. PubMed ID: 31077353 [TBL] [Abstract][Full Text] [Related]
6. Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus - An electrochemical study. Carreira C; Dos Santos MMC; Pauleta SR; Moura I Bioelectrochemistry; 2020 Jun; 133():107483. PubMed ID: 32120320 [TBL] [Abstract][Full Text] [Related]
7. Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing. Serra AS; Jorge SR; Silveira CM; Moura JJ; Jubete E; Ochoteco E; Cabañero G; Grande H; Almeida MG Anal Chim Acta; 2011 May; 693(1-2):41-6. PubMed ID: 21504809 [TBL] [Abstract][Full Text] [Related]
8. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. Carreira C; Nunes RF; Mestre O; Moura I; Pauleta SR J Biol Inorg Chem; 2020 Oct; 25(7):927-940. PubMed ID: 32851479 [TBL] [Abstract][Full Text] [Related]
9. Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase. Dell'Acqua S; Pauleta SR; Moura JJ; Moura I Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1204-12. PubMed ID: 22451106 [TBL] [Abstract][Full Text] [Related]
10. Silk provides a new avenue for third generation biosensors: Sensitive, selective and stable electrochemical detection of nitric oxide. Musameh MM; Dunn CJ; Uddin MH; Sutherland TD; Rapson TD Biosens Bioelectron; 2018 Apr; 103():26-31. PubMed ID: 29277011 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. Cordas CM; Duarte AG; Moura JJ; Moura I Biochim Biophys Acta; 2013 Mar; 1827(3):233-8. PubMed ID: 23142527 [TBL] [Abstract][Full Text] [Related]
12. Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen. Flock U; Watmough NJ; Adelroth P Biochemistry; 2005 Aug; 44(31):10711-9. PubMed ID: 16060680 [TBL] [Abstract][Full Text] [Related]
13. Modified fractal iron oxide magnetic nanostructure: A novel and high performance platform for redox protein immobilization, direct electrochemistry and bioelectrocatalysis application. Bagheri H; Ranjbari E; Amiri-Aref M; Hajian A; Ardakani YH; Amidi S Biosens Bioelectron; 2016 Nov; 85():814-821. PubMed ID: 27290665 [TBL] [Abstract][Full Text] [Related]
14. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results. Blomberg MRA; Ädelroth P Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051 [TBL] [Abstract][Full Text] [Related]
15. The unusual redox properties of C-type oxidases. Melin F; Xie H; Meyer T; Ahn YO; Gennis RB; Michel H; Hellwig P Biochim Biophys Acta; 2016 Dec; 1857(12):1892-1899. PubMed ID: 27664317 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase. Pinakoulaki E; Varotsis C J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269 [TBL] [Abstract][Full Text] [Related]
17. Resonance Raman spectroscopy of nitric oxide reductase and cbb(3) heme-copper oxidase. Pinakoulaki E; Varotsis C J Phys Chem B; 2008 Feb; 112(6):1851-7. PubMed ID: 18211060 [TBL] [Abstract][Full Text] [Related]
18. Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products. Borisov VB; Forte E; Giuffrè A; Konstantinov A; Sarti P J Inorg Biochem; 2009 Aug; 103(8):1185-7. PubMed ID: 19592112 [TBL] [Abstract][Full Text] [Related]
19. Direct electrochemical detection of extracellular nitric oxide in Arabidopsis protoplast based on cytochrome P450 55B1 biosensor. Wu Y; Jiang N; He Z; Yang Y; Li Y Nitric Oxide; 2023 Mar; 132():8-14. PubMed ID: 36731643 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum. Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]